• Title/Summary/Keyword: Geometric Attack

Search Result 44, Processing Time 0.063 seconds

A Robust Watermarking Method against Partial Damage and Geometric Attack (부분 손상과 기하학적 공격에 강인한 워터마킹 방법)

  • Kim, Hak-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1102-1111
    • /
    • 2012
  • In this paper, we propose a robust watermarking method against geometric attack even though the watermarked image is partially damaged. This method consists of standard image normalization which transforms any image into a predefined standard image and embedding watermark in DCT domain of standard normalized image using spread spectrum technique. The proposed standard image normalization method has an improvement over existing image normalization method, so it is robust to partial damage and geometric attack. The watermark embedding method using spread spectrum technique also has a robustness to image losses such as blurring, sharpening and compressions. In addition, the proposed watermarking method does not need an original image to detect watermark, so it is useful to public watermarking applications. Several experimental results show that the proposed watermarking method is robust to partial damage and various attacks including geometric deformation.

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.

Design of robust Medical Image Security Algorithm using Watershed Division Method (워터쉐드 분할 기법을 이용한 견고한 의료 영상보안 알고리즘 설계)

  • Oh, Guan-Tack;Jung, Min-Six;Lee, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1980-1986
    • /
    • 2008
  • A digital watermarking technique used as a protection and certifying mechanism of copyrighted creations including music, still images, and videos in terms of lading any loss in data, reproduction and pursuit. This study suggests using a selected geometric invariant point through the whole processing procedure based on the invariant point so that it will be robust in a geometric transformation attack. The introduced algorithm here is based on a watershed splitting method in order to make medical images strong against RST transformation and other processing. This algorithm also proved that is has robustness against not only RST attack, but also JPEG compression attack and filtering attack.

Securing a Cyber Physical System in Nuclear Power Plants Using Least Square Approximation and Computational Geometric Approach

  • Gawand, Hemangi Laxman;Bhattacharjee, A.K.;Roy, Kallol
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.484-494
    • /
    • 2017
  • In industrial plants such as nuclear power plants, system operations are performed by embedded controllers orchestrated by Supervisory Control and Data Acquisition (SCADA) software. A targeted attack (also termed a control aware attack) on the controller/SCADA software can lead a control system to operate in an unsafe mode or sometimes to complete shutdown of the plant. Such malware attacks can result in tremendous cost to the organization for recovery, cleanup, and maintenance activity. SCADA systems in operational mode generate huge log files. These files are useful in analysis of the plant behavior and diagnostics during an ongoing attack. However, they are bulky and difficult for manual inspection. Data mining techniques such as least squares approximation and computational methods can be used in the analysis of logs and to take proactive actions when required. This paper explores methodologies and algorithms so as to develop an effective monitoring scheme against control aware cyber attacks. It also explains soft computation techniques such as the computational geometric method and least squares approximation that can be effective in monitor design. This paper provides insights into diagnostic monitoring of its effectiveness by attack simulations on a four-tank model and using computation techniques to diagnose it. Cyber security of instrumentation and control systems used in nuclear power plants is of paramount importance and hence could be a possible target of such applications.

Design of robust Watermarking Algorithm against the Geometric Transformation for Medical Image Security (의료 영상보안을 위한 기하학적 변형에 견고한 워터마킹 알고리즘 설계)

  • Lee, Yun-Bae;Oh, Guan-Tack
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2586-2594
    • /
    • 2009
  • A digital watermarking technique used as a protection and certifying mechanism of copyrighted creations including music, still images, and videos in terms of finding any loss in data, reproduction and pursuit. This study suggests using a selected geometric invariant point through the whole processing procedure of an image and inserting and extracting based on the invariant point so that it will be robust in a geometric transformation attack. The introduced algorithm here is based on a watershed splitting method in order to make medical images strong against RST(Rotation Scale, Translation) transformation and other processing. It also helps to maintain the watermark in images that are compressed and stored for a period of time. This algorithm also proved that is has robustness against not only JPEG compression attack, but also RST attack and filtering attack.

Asymmetric Vortices around a Body at High Angle of Attack Subsonic Flow (아음속 유동하의 고 받음각 물체 주위의 비대칭 와류 특성 연구)

  • Park, Mee-Young;Kim, Wan-Sub;Lee, Jae-Woo;Park, Soo-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.33-38
    • /
    • 2008
  • Numerical investigation of asymmetric vortices at high angles of attack subsonic flow is performed using three-dimensional Navier-Stokes equations. A small bump has been carefully selected and attached near the nose of an ogive cylinder to simulate symmetric vortices. Selected bump shape does develop asymmetric vortices and is verified using Lamont's experimental results. By changing the angle of attack, Reynolds numbers, and Mach numbers, the characteristics of asymmetric vortices are observed. The angle of attack which contributes significantly to the generation of asymmetric vortices are over 30 degrees. By increasing Mach number and Reynolds number asymmetric vortices, hence the side forces show decreasing trend..

  • PDF

Geometric CAD Watermarking System Using Line, Arc, Circle Components in Architectural Design Drawings

  • Jang, Bong-Ju;Lee, Suk-Hwan;Kwon, Ki-Ryong;Moon, Kwang-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1601-1611
    • /
    • 2007
  • In this paper, we presented geometric CAD watermarking scheme for Architectural design drawings using line, arc, and circle components to prevent infringement of copyright from unlawfulness reproductions and distribution. The conventional CAD watermarking scheme can be applied to both line and arc components. But the proposed scheme consists of line, arc and circle watermarking schemes for three basic components of CAD design. After extracting line, arc and circle components from designed drawing, the watermark is embedded into the length of Line component, the angle of arc component, and the radius of circle component considering the robustness against various geometric transformations. The embedding strengths in each component are determined to be preserving the transparency of the watermark. By experimental result, we confirmed the robustness and the invisibility of embedded watermarks in several conversions of architectural design drawing.

  • PDF

Numerical Simulation of Asymmetric Vortical Flows on a Slender Body at High Incidence (큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사)

  • Rho Oh Hyun;Hwang Soo Jung
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.98-111
    • /
    • 1996
  • The compressible laminar and turbulent viscous flows on a slender body in supersonic speed as well as subsonic speed have been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30 and 40 dog, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

Numerical Simulation of Flow Around a Slender Body at High Angle of Attack (큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사)

  • Rho Oh Hyun;Hwang Soo Jung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.3-10
    • /
    • 1995
  • The compressible laminar and turbulent viscous flow on a slender body in supersonic speed as well as subsonic speed has been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30, 40 deg, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

Unsteady galloping of sharp-edged bluff bodies: experimental observations on the effect of the wind angle of attack

  • Chen, Cong;Dai, Bingyu;Wieczorek, Niccolo;Unglaub, Julian;Thiele, Klaus
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.255-268
    • /
    • 2022
  • Light-weight or low-damped structures may encounter the unsteady galloping instability that occurs at low reduced wind speeds, where the classical quasi-steady assumption is invalid. Although this unsteady phenomenon has been widely studied for rectangular cross sections with one side perpendicular to the incidence flow, the effect of the mean wind angle of attack has not been paid enough attention yet. With four sectional models of different side ratios and geometric shapes, the presented research focuses on the effect of the wind angle of attack on unsteady galloping instability. In static tests, comparatively strong vortex shedding force was noticed in the middle of the range of flow incidence where the lift coefficient shows a negative slope. In aeroelastic tests with a low Scruton number, the typical unsteady galloping, which is due to an interaction with vortex-induced vibration and results in unrestricted oscillation initiating at the Kármán vortex resonance wind speed, was observed for the wind angles of attack that characterize relatively strong vortex shedding force. In contrast, for the wind angles of attack with relatively weak shedding force, an "atypical" unsteady galloping was found to occur at a reduced wind speed clearly higher than the Kármán-vortex resonance one. These observations are valid for all four wind tunnel models. One of the wind tunnel models (with a bridge deck cross section) was also tested in a turbulent flow with an intensity about 9%, showing only the atypical unsteady galloping. However, the wind angle of attack with the comparatively strong vortex shedding force remains the most unfavorable one with respect to the instability threshold in low Scruton number conditions.