• Title/Summary/Keyword: Geological process

Search Result 367, Processing Time 0.032 seconds

A risk assessment of $CO_2$ geological storage for domestic application (이산화탄소 지중저장의 국내적용을 위한 위해성 평가 방안)

  • Lee, Kang-Ryel;Lee, Dae-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.220.1-220.1
    • /
    • 2011
  • In recent years, the importance of Carbon Capture and Storage (hereafter CCS) is growing bigger and bigger. The development and commercialization of CCS technology are concerned for reducing carbon dioxide($CO_2$) emissions. For the most studies, the technology of $CO_2$ storage is known as the geological storage, ocean sequestration, mineral carbonation, industrial utilization, and so on. The geological storage is adjudged the most reasonable technology from economic and environmental aspects. Generally, the $CO_2$ geological storage is comprised of compression - transportation - drilling/injection - storage/management process. The critical problem is a leakage of $CO_2$ in all process. For resolving a leakage problem, it is necessary to predict and build a monitoring system. Those systems are proved safety of a leakage and received positive social perceptions of $CO_2$ geological storage. For those reasons, a risk assessment of $CO_2$ geological storage is required. A risk assessment is an estimated process of the possible effects when spilling $CO_2$. Although numerous studies of risk assessment have studied, it is incomplete to evaluate a risk and disaster quantitatively. The risk assessment will be developed for domestic application and safe $CO_2$ geological storage considering characteristics of Korea.

  • PDF

Emplacement Process of the HLW in the Deep Geological Repository (지하처분장에서의 고준위폐기물 처분공정 개념)

  • 이종열;김성기;조동건;최희주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1013-1016
    • /
    • 2004
  • High level radioactive wastes, such as spent fuels generated from nuclear power plant, will be disposed in a deep geological repository. To maintain the integrity of the disposal canister and to carry out the process effectively, the emplacement process for the canister system in borehole of disposal tunnel should be well defined. In this study, the concept of the disposal canister emplacement process for deep geological disposal was established. To do this, the spent fuel arisings and disposal rate were reviewed. Also, not only design requirements, such canister and disposal depth but also preliminary repository layout concept were reviewed. Based on the requirements and the other bases, the canister emplacement process in the borehole of the disposal tunnel was established. The established concept of the disposal canister emplacement process will be improved continuously with the future studies. And this concept can be effectively used in implementing the reference repository system of our own case.

  • PDF

A modularized numerical framework for the process-based total system performance assessment of geological disposal systems

  • Kim, Jung-Woo;Jang, Hong;Lee, Dong Hyuk;Cho, Hyun Ho;Lee, Jaewon;Kim, Minjeong;Ju, Heejae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2828-2839
    • /
    • 2022
  • This study developed a safety assessment tool for geological disposal systems called APro, a systemically integrated modeling system based on modularizing and coupling the processes which need to be considered in a geological disposal system. Thermal, hydraulic, chemical, canister failure, radionuclide release and transport processes were considered in the current version of APro. Each of the unit processes in APro consists of a single Default Module, and several Alternative Modules which can increase the flexibility of the model. As an initial stage of developing the modularization concept and modeling interface, the Default Modules of each unit process were described, with one Alternative Module of chemical process. The computation part of APro is mainly a MATLAB workspace controlling COMSOL and PHREEQC, which are coupled by an operator splitting scheme. The APro model domain is a stylized geological disposal system employing the Swedish disposal concept (KBS-3 type), but the repository layout can be freely adjusted. In order to show the applicability of APro to the total system performance assessment of geological disposal system, some sample simulations were conducted. From the results, it was confirmed that coupling of the thermal and hydraulic processes and coupling of the canister failure and the radionuclide release processes were well reflected in APro. In addition, the technical connectivity between COMSOL and PHREEQC was also confirmed.

Assessment of geological hazards in landslide risk using the analysis process method

  • Peixi Guo;Seyyed Behnam Beheshti;Maryam Shokravi;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.451-454
    • /
    • 2023
  • Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.

A Review on Development of Nationwide Map of Scientific Features for Geological Disposal in Japan (일본의 과학적 특성 지도 개발에 대한 고찰)

  • Lee, Jeong-Hwan;Lee, Sang-Jin;Kim, Hyeongjin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.447-457
    • /
    • 2019
  • Japan enacted the "Designated Radioactive Waste Final Disposal Act" for the geological disposal of high-level radioactive waste in 2000 and began the site selection process. However, no local government wanted to participate in the siting process. Therefore, in 2015, the Japanese government developed a new site selection process during the literature survey step, and on June 28, 2017 they published a "Nationwide Map of Scientific Features for Geological Disposal" created with the aim of promoting public participation from local governments. This map illustrated the requirements and criteria to be considered in the early or conceptual stages of securing a geological repository and was useful for improving public understanding and exchanging opinions with local governments by analyzing the suitability of different geological disposal sites.

The Swiss Radioactive Waste Management Program - Brief History, Status, and Outlook

  • Vomvoris, S.;Claudel, A.;Blechschmidt, I.;Muller, H.R.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.9-27
    • /
    • 2013
  • Nagra was established in 1972 by the Swiss nuclear power plant operators and the Federal Government to implement permanent and safe disposal of all types of radioactive waste generated in Switzerland. The Swiss Nuclear Energy Act specifies that these shall be disposed of in deep geological repositories. A number of different geological formations and sites have been investigated to date and an extended database of geological characteristics as well as data and state-of-the-art methodologies required for the evaluation of the long-term safety of repository systems have been developed. The research, development, and demonstration activities are further supported by the two underground research facilities operating in Switzerland, the Grimsel Test Site and the Mont Terri Project, along with very active collaboration of Nagra with national and international partners. A new site selection process was approved by the Federal Government in 2008 and is ongoing. This process is driven by the long-term safety and feasibility of the geological repositories and is based on a step-wise decision-making approach with a strong participatory component from the affected communities and regions. In this paper a brief history and the current status of the Swiss radioactive waste management program are presented and special characteristics that may be useful beyond the Swiss program are highlighted and discussed.

A Study on Field Trip of Specific-Region Environment -Focus on 'Geological Unit' of Elementary Science- (특이 지역 환경에 대한 야외 학습 연구 -초등과학 지질 영역을 중심으로-)

  • Hong, Seung-Ho
    • Hwankyungkyoyuk
    • /
    • v.21 no.3
    • /
    • pp.1-12
    • /
    • 2008
  • This study is aimed at suggesting ways to develop field trip or learning materials focusing on environment of Jeju seashore in order to make an effective field trip. To perform these purposes, the contents and concepts were analyzed from environment-related 'geological unit' of elementary science textbook. Afterwards, the places having the geological features in coincidence with them are chosen, and investigated, and these regions can develop into geological teaming places for field trip. Each teaming spot focuses on understanding and finding out the characteristic geological environment of rock shore, gravel shore, sand shore, shellfish shore, and tideland shore among Jeju shores. When field trip is conducted at the preparatory stage, students can get advance knowledge on geological concepts from textbook. The activity record paper is presented at the field trip stage where students observe geological phenomena on their own. After field trip is finished, the summary stage is given to solve some problems on the basis of the observed contents. The developed data from this research have its regional limits, but is surely useful for teachers who try to plan field trip when they especially choose the right field trip spots, or plan to make the process for field trip preparation of the environmental education. Furthermore, with this survey and activities, students can take the chance to improve the learning effect through their own experience on environment of Jeju seashore.

  • PDF

A Study on the Technique for Evaluating Geological Suitability about the Route of a Linear Civil Engineering Structure (선형토목구조물에 대한 지질학적 측면 노선의 적정성 평가기술)

  • Hwang, Hak-Soo;Moon, Sang-Ho;Kim, Yong-Il;An, Dong-Kwang;Ha, Sung-Ho;Song, Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.501-509
    • /
    • 2008
  • It is very important in designing civil engineering structures that the quantification of geological informations must be carried out in terms of importance. In this study, the geological informations are quantified and evaluated using analytic hierarchy process (AHP). A professional group was organized with 30 people in the field of civil engineering, transport, and geology. On the assumption that the civil engineering structure is linear such as highway or railroad, a survey of the group in terms of geological and hydro-geological elements has found that the hierarchy structure is composed of four levels. And fault structure is a primary factor which causes the stability of a linear civil engineering structure. The importance of geological items are arranged with fault (0.456), foliation/bedding plane(0.l65), lineation(0.144), ground water(0.124), and rock type(0.111).

The Effects of the Online Learning Using Virtual Reality (VR) Geological Data: Focused on the Geo-Big Data Open Platform (가상현실(VR) 지질자료 개발을 통한 원격수업의 효과 분석: 지오빅데이터 오픈플랫폼 활용을 중심으로)

  • Yoon, Han Do;Kim, Hyoungbum;Kim, Heoungtae
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.47-61
    • /
    • 2022
  • In this study, We developed VR (Virtual Reality) geological resources based on the Geo Big Data of the Big Data platform that provided by the Korea Institute of Geoscience and Mineral Material (KIGAM). So students selected the theme of lessons by using these resources and we operated Remote classes using the materials that developed as to Virtual Reality. Therefore, the geological theme maps provided by the Geo Big Data Open Platform were reconstructed and produced materials were created for Study about Real Korean geological outcrops grounded in Virtual Reality. And Topographic information data was used to produce class materials for Remote classes. Twenty students were selected by Random sampling, and data were collected by conducting a survey including interviews to confirm the change in students' perception of remote classes in virtual reality geological data development and the effect of the classes, so data were analyzed through inductive categorization. The results of this study are as follows. First, students showed positive responses in terms of interest, utilization, and knowledge utilization as taking remote classes for developing geological data in virtual reality geological data. This is the result of showing the adaptability of diverse and flexible learning getting away from a fixed framework by motivating and encouraging students and inducing cooperation for communication. Second, students recognized distance education in the development of Virtual Reality geological data as 'Realistic hands-on learning process', 'Immersive learning process by motivation', and 'Learning process of acquiring knowledge in the field of earth science'.