• Title/Summary/Keyword: Geological information

Search Result 545, Processing Time 0.023 seconds

Geological Significance of Liquefaction and Soft-sediment Deformation Structures (액상화와 연질퇴적변형구조의 지질학적 의미)

  • Ghim, Yong Sik;Ko, Kyoungtae
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.471-484
    • /
    • 2019
  • Liquefaction occurs by a temporal loss of sediment strength as a consequence of increased pore water pressure during the re-arrangement of unconsolidated, granular sediments. Liquefaction is dependent on the physical properties of the sediments and cause surface cracks, landslide, and the formation of soft-sediment deformation structures(SSDS). SSDS is formed by the combined action of the driving force and deformation mechanism(liquefaction, thixotropy, and fluidization) that is triggered by endogenic or exogenic triggers. So research on the SSDS can unravel syndepositional geological events. If detailed sedimentologic analysis together with surrounding geological context suggest SSDS formed by earthquakes, the SSDS provide a clue to unravel syndepositional tectonic activities and detailed paleoseismological information(> Mw 5) including earthquakes that leave no surface expression.

Geological Applications and Limitations of Regional Tephra Layers in Terrestrial Deposits in Korea (한국의 육상에서 발견되는 광역테프라층의 지질학적 활용과 한계)

  • Cheong-Bin Kim;Young-Seog Kim;Hyoun Soo Lim
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.680-690
    • /
    • 2022
  • Tephrochronology uses regional tephra for age dating and stratigraphic correlations. Regional tephras are important in Quaternary geology and archaeology because they can be used as stratigraphic time-markers. In this review, identification and dating methods of tephra are summarized. In addition, the characteristics of regional tephras in terrestrial deposits of the Korean Peninsula are elaborated, and geological applications and limitations of the regional tephra layers are also discussed. So far, AT, Ata, and Kb-Ks tephra layers from Kyushu, Japan have been found in Pleistocene paleosol, marine terrace deposits, and lacustrine deposits in Korea. Also, although not officially confirmed, Aso-4 tephra is likely to occur in terrestrial deposits. The regional tephra layers are vital for dating, especially with regard to sediments over 50 ka beyond the range of radiocarbon dating, and for dating of active faults. Furthermore, it can provide important information for preparing countermeasures against volcanic disasters. However, in order to use the tephra layer geologically, it must be confirmed whether it is a primary deposit based on sedimentological study.

Hex Code-based Geological Cross-sections Describing Landscape Dynamics in the Jeju Geomunoreum Lava Tube System

  • Yi, Yun-Jae;Kim, Soo-In;Ahn, Ung-San;Lee, Keun Chul;Lee, Mi-Kyung;Lee, Jung-Sook;Kim, Dae-Shin;Kim, Jong-Shik
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.65-70
    • /
    • 2022
  • BACKGROUND: The Geomunoreum Lava Tube System (GLTS) is both vast and culturally valuable. The Jeju Volcanic Island and Lava Tubes, which are partly composed of the GLTS, have been declared as a United Nations Educational, Scientific, and Cultural Organization (UNESCO) World Heritage Site. Exploration of the caves is strictly regulated to conserve these vulnerable environments. Photographs provide limited information and do not describe the entire environment comprehensively. Therefore, we created several illustrations of the lava tubes to display their environmental features. METHODS AND RESULTS: We explored six lava caves (upstream and downstream) in the GLTS and photographed their geological features and yellow walls, the colors of which are influenced by microbial mats. We compared the hex codes of the wall colors using the Clip Studio v1.10.5 software and created illustrations that accurately represent the scale and features of the caves. CONCLUSION(S): Upstream and downstream caves of the GLTS differ in scale and volcanic features. We illustrated various characteristics of the caves including lava cave features, vegetation, and microbial mats. We also described the internal and external cave environments.

A GIS-based Environmental Sensitivity Assessment of Geopark - Slope Disaster in Cheongsong UNESCO Global Geopark - (GIS를 활용한 지오파크 환경 민감성 평가 - 청송 세계지질공원의 사면재해 민감성을 중심으로 -)

  • Kim, Hyejin;Sung, Hyo Hyun;Kim, Jisoo;Ahn, Sejin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.81-97
    • /
    • 2020
  • Geopark refers to a single boundary area consisting of a collection of geosites and geotrails, which includes ecological, historical and cultural elements based on geological and geomorphological resources. To ensure the continued development and conservation of existing listed geoparks, it is necessary to carry out an environmental sensitivity analysis of the geopark components by utilizing spatial information from various scales. The objectives of this study are to analyze the environmental sensitivity in Cheongsong UNESCO global geopark in relation with slope disaster using GIS and to understand its spatial distribution in connection with geosites and geotrails. Two types of spatial database were constructed; geosites and geotrails in Cheongsong UNESCO global geopark and spatial data to perform environmental sensitivity. Potential soil loss and slope stability were analyzed to derive environmental sensitivity related to slope hazard. The results showed relatively high environmental sensitivity along the drainage network of Cheongsong UNESCO global geopark. Zonal statistics analysis was conducted for further detailed distribution of environmental sensitivity based on buffer zones of geosites and geotrails. Majority of geological sites, geological trails, Jeolgol gorge~Jusan Pond section in hiking trails, and Dalgi Mineral Spring Site~Artistic Genius Republic of Korea(Jangnankki gonghwaguk) section in road areas show relatively high slope hazard sensitivity within buffer zones.

Suggestion on Screening Concept of Radionuclides to be Considered for the Radiological Safety Assessment of the Domestic KBS-3 Type Geological Disposal Facility of High-level Radioactive Waste(HLW) (국내 KBS-3 방식 고준위방사성폐기물 심층처분시설 방사선학적 안전성 평가 대상 방사성핵종 목록 선정개념(안) 제언)

  • Sukhoon Kim;Donghyun Lee;Dong-Keuk Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.45-59
    • /
    • 2023
  • The transport calculation for a wide variety of radionuclides contained in high-level radioactive waste, especially spent nuclear fuel, is computationally difficult, and input data collection for this also take a considerable amount of time. Accordingly, considering limited resources, it is possible to reduce the calculation time while minimizing impact on accuracy by including only radionuclides important to calculation result through applying some criteria among potential radiation source terms that may release into environment. In this paper, therefore, we reviewed and analyzed the screening process performed to select radionuclides to be considered in the safety assessment for the KBS-3 type repository in Sweden and Finland. In both countries, it was confirmed that a list of radionuclides was selected by comprehensively considering screening criteria such as radioactivity inventory, half-life, radiotoxicity, risk quotient, and transport properties, and etc. A comparison of radionuclides included in the radiological safety assessment in both countries suggests that most of nuclides are considered in common, and a few nuclides considered only in one country are due to differences in decay chain treatment or spent fuel types. As of now, since most of information on the disposal facility in Korea has not been determined, it is necessary to comprehensively model release and transport of all radionuclides considered in Sweden and Finland when performing the radiological safety assessment. Based on these results, we derived the screening concept of selecting a list of radionuclides to be considered in the radiological safety assessment for the domestic KBS-3 type geological disposal facility, and this result is expected to be used as technical basis for confirming conformity with the safety objective. In a more detailed evaluation reflecting domestic characteristics in the future, it would be desirable to consider only radionuclides selected in accordance with the screening procedure. However, further research should be conducted to determine the quantitative limit for each criteria.

Visualization analysis using R Shiny (R의 Shiny를 이용한 시각화 분석 활용 사례)

  • Na, Jonghwa;Hwang, Eunji
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1279-1290
    • /
    • 2017
  • R's {shiny} package provides an environment for creating web applications with only R scripts. Shiny does not require knowledge of a separate web programming language and its development is very easy and straightforward. In addition, Shiny has a variety of extensibility, and its functions are expanding day by day. Therefore, the presentation of high-quality results is an excellent tool for R-based analysts. In this paper, we present actual cases of large data analysis using Shiny. First, geological anomaly zone is extracted by analyzing topographical data expressed in the form of contour lines by analysis related to spatial data. Next, we will construct a model to predict major diseases by 16 cities and provinces nationwide using weather, environment, and social media information. In this process, we want to show that Shiny is very effective for data visualization and analysis.

Evaluation of Hydrogeological Characteristic of Natural Barrier in Korea for Establishing Safety Guidelines of Deep Geological High-Level Radioactive Waste Disposal Site (고준위방사성폐기물 심층처분 부지 수리 지질 안전 규제를 위한 국내 지질환경 수리 특성 평가)

  • Suwan So;Jiho Jeong;Jaesung Park;Hyeongmok Lee;Subi Lee;Sujin Kim;Sinda Mbarki;Jina Jeong
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.397-416
    • /
    • 2024
  • This study assessed the hydrogeological properties of the deep geological environment to develop safety criteria for the natural barriers used in the deep geological disposal of high-level radioactive waste in Korea. The assessment focused on the distribution and trends of hydraulic conductivity and permeability properties appropriate for the domestic geological environment, using various in-situ hydraulic test data collected for groundwater development and management. To develop a depth-hydrogeological property relationship model suitable for domestic conditions, the study reviewed various international research examples and applied a representative model that explains the trends of hydraulic conductivity and permeability with depth. The development of the model suitable for Korea involved applying ensemble regression analysis to account for the uncertainty of various factors in the collected data. The results confirmed that existing international depth-hydrogeological property relationship models adequately describe the characteristics of the domestic geological environment. Considering the preferred hydrogeological criteria suggested by countries like Sweden, Germany, and Canada, there is a high likelihood that a suitable geological environment exists in Korea. Additionally, the application of hydrogeological criteria indicative of low-permeability environments showed that suitable conditions for disposal construction increase at depths greater than 300 m, where the influence of fractures on groundwater flow might be minimal at depths exceeding 500 m. This research can serve as foundational information for establishing hydrogeological safety standards for natural barriers in Korea according to international regulatory guidelines.

The Development of 3-D System for Visualizing Information on Geotechnical Site Investigation (지반조사 정보의 3차원 가시화 시스템 개발)

  • 홍성완;배규진;서용석;김창용;김광염
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.179-188
    • /
    • 2002
  • With improving computer penormance and advancing simulation techniques, a growing number of softwares are being developed for visualization of investigation results in geotechnical problems. It is a very important subject for geological site investigation to understand or predict if there would be any hazardous geological conclition that might cause any increase of construction costs or an extension of construction period. A 3-D (three-climensional) visualization technique may be one of the powerful tools to overcome an uncertainty problem of geologica] site investigatior. The paper describes an overview of a newly developed geotechnical 3-D interpretation system for the purpose of applying the 3-D visualization technique, GIS (geographic information system) and D/B (database) to tunnel design and construction. VR (virtual reality) and 3-D visualization techniques are applied in order to develope the 3-D model of characteristics and structures of rock mass. D/B system for all the materials related to site investigation and tunnel construction is developed using GIS technique. This system is very useful for civil engineers to make a plan of tunnel construction at the design stage and also during construction with the advantage of improving the economy and safety of tunnels.

Development and Application of a Methodology to Build Geotechnical Information System Based on Geo-Knowledge Using GIS Technology (GIS를 이용한 지반-지식 기반 지반 정보화 시스템 구축 기법의 개발 및 적용)

  • Sun Chang-Guk;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.55-68
    • /
    • 2006
  • For the reliable prediction of spatial geotechnical data, a procedure to build the Geotechnical Information System (GTIS) based on geo-knowledge within the frame of GIS technology was developed by introducing a couple of new concepts of the extended area containing the study area and the additional site visit for acquiring surface geological data. To build the GTIS for Gyeongju as the case study of regional model application, intensive site investigations and pre-existing geotechnical data collections were performed and additional site visit was also carried out for acquiring surface geo-layer data in accordance with the developed procedure. Within the GTIS based on geo-knowledge for Gyeongiu area, the spatially distributed geo-layers across the extended area were predicted using the geostatistical kriging method and those for the study area were extracted. Furthermore, the spatial distribution maps for the thickess of geo-layers and the depth to bedrock were constructed for the practical use in geotechnical field. It was evaluated that the GTIS based on geo-knowledge developed in this study is superior to the conventional geotechnical GIS in terms of both the standard deviation and the geological expert judgment.

Kirchhoff prestack depth migration for gas hydrate seismic data set (가스 하이드레이트 자료에 대한 중합전 키르히호프 심도 구조보정)

  • Hien, Doan Huy;Jang, Seong-Hyung;Kim, Young-Wan;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.493-496
    • /
    • 2007
  • Korean Institute of Geosciences and Mineral Resources (KIGAM) has studied on gas hydrate in the Ulleung Basin, East sea of Korea since 1997. Most of all, a evidence for existence of gas hydrate, possible new energy resources, in seismic reflection data is bottom simulating reflection (BSR) which parallel to the sea bottom. Here we conducted the conventional data processing for gas hydrate data and Kirchhoff prestack depth migration. Kirchhoff migration is widely used for pre- and post-stack migration might be helpful to better image as well as to get the geological information. The processed stack image by GEOBIT showed some geological structures such as faults and shallow gas hydrate seeping area indicated by strong BSR. The BSR in the stack image showed at TWT 3.07s between shot gather No 3940 to No 4120. The estimated gas seeping area occurred at the shot point No 4187 to No 4203 and it seems to have some minor faults at shot point No 3735, 3791, 3947 and 4120. According to the result of depth migration, the BSR showed as 2.3km below the sea bottom.

  • PDF