• Title/Summary/Keyword: Geological Data

Search Result 1,065, Processing Time 0.028 seconds

A Review on Coal Exploration in Indonesia: The Cases of Korean Public-private Cooperation (인도네시아 석탄 탐사에 관한 고찰: 해외자원개발 조사사업 지원사례들)

  • Choi, Younggi;Kim, Byounghan;Song, Younghyun;Keum, Gyojin;Sung, Junyoung;Seo, Changwon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.149-169
    • /
    • 2022
  • Indonesia coal is widely consumed as a major energy source in Asian countries, such as China, India, and Korea. In the paper, the characteristics of the coal-bearing basin and coal deposits in Indonesia are comprehensively reviewed using the exploration data accumulated through the coal exploration projects supported by Korean government subsidy. Cenozoic coal bearing sedimentary basins in Indonesia extensively contain coal deposits and are most productive in East Asia. Properties of coal deposits are variable depending on stratigraphy, depositional histories and tectonics. Eocene coal deposits tend to have thinner coal thickness and fewer numbers of coal seams, but have been major exploration targets due to higher calorific value and good coal quality. Late Oligocene-Early Miocene coal deposits occur in small scales, but are suitable enough for small to medium-sized coal mines. Miocene-Pliocene coal deposits, which are widely distributed across East Kalimantan and Sumatra, are being actively mined by taking advantage of thick coal thickness and abundant reserves in spite of their lower calorific values. The experience of various exploration informs that we need to have an overall understanding on geological conditions for successful coal exploration. The details on coal-bearing basin and coal deposits in Indonesia provided through the paper will be useful data for up-coming exploration activities by Korean companies.

Crossplot Interpretation of Electrical Resistivity and Seismic Velocity Values for Mapping Weak Zones in Levees (제방의 취약구간 파악을 위한 전기비저항과 탄성파속도의 교차출력 해석)

  • Cho, Kyoung-Seo;Kim, Jeong-In;Kim, Jong-Woo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.507-522
    • /
    • 2021
  • Specific survey objectives often cannot be met using only one geophysical method, as each method's results are influenced by the specific physical properties of subsurface materials. In particular, areas susceptible to geological hazards require investigation using more than one method in order to reduce risks to life and property. Instead of analyzing the results from each method separately, this work develops a four-quadrant criterion for classifying areas of levees as safe or weak. The assessment is based on statistically determined thresholds of seismic velocity (P-wave velocity from seismic refraction and S-wave velocity from multichannel analysis of surface waves) and electrical resistivity. Thresholds are determined by subtracting the standard deviation from the mean during performance testing of this correlation technique applied to model data of four horizontal and inclined fracture zones. Compared with results from the crossplot of resistivity and P-wave velocity, crossplot analysis using resistivity and S-wave velocity data provides more reliable information on the soil type, ground stiffness, and lithological characteristics of the levee system. A loose and sandy zone (represented by low S-wave velocity and high resistivity) falling within the second quadrant is interpreted to be a weak zone. This interpretation is well supported by the N values from standard penetrating test for the central core.

A Study on Flood Susceptibility of Heritage Sites by Heritage Type Depending on Locational Characteristics (입지특성에 따른 문화재 유형별 홍수 민감성 기초연구)

  • Kim, Ji-Soo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.46-56
    • /
    • 2022
  • This study aimed to analyze the locational characteristics of heritage sites in Seoul in order to identify flood susceptibility by type. As for the location factors related to flood susceptibility, elevation, slope, distance to streams, and topographic location were analyzed. Literature review was supplemented for the historical and humanistic environments of heritage sites. The results of the study are as follows. First, heritage sites in Seoul are distributed throughout the city, and are especially highly dense in the Hanyangdoseong fortress. It was also confirmed that heritage sites were concentrated around Jung-gu, Jongno-gu, Jingwan-dong, and Ui-dong in the quantitative spatial analyses. Second, types of heritage sites at the circumstance susceptible to flood damage were related to commerce and distribution, traffic, modern traffic and communication, geological monument, residence, government office, and palace. Third, heritage types with locational characteristics that showed low flood susceptibility were found to be natural scenic spots, telecommunication, ceramics, Buddhism, tombs, and tomb sculptural heritage assets. In a time when risk factors that can damage the value of heritage are gradually increasing due to anthropogenic influences along with changes in the natural environment, this study provides basic data for vulnerability analysis that reflects the unique characteristics of heritage assets. The results can contribute to more comprehensive and comprehensive insights for the management and protection of heritage by including the humanities and social science data together with natural factors in the analysis.

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.

Comparison of Content related to 'Geology of the Korean Peninsula' presented in the Textbooks of the 2015 Revised Curriculum: Focused on Earth Science II and Korean Geography Textbooks (2015 개정 교육과정의 교과서에 제시된 '한반도의 지질' 내용 비교: 지구과학 II 및 한국지리 교과서를 중심으로)

  • Kyeong-Jin Park
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.236-252
    • /
    • 2023
  • Both Earth science II and Korean geography textbooks emphasize the importance of content related to 'geology of the Korean Peninsula'. This study aimed to analyze the differences in the content related to the 'geology of the Korean Peninsula' presented in the textbooks, and to find out whether these differences are consistent with the latest scientific knowledge in any inconsistencies are found. For this purpose, seven textbooks (four Earth science II and three Korean geography) published under the 2015 revised curriculum were selected as the subject of analysis, and the difference in the description of the tectonic provinces of the Korean Peninsula, geologic time scale, and explanatory texts of geological characteristics between Earth science II and Korean geography textbooks were compared. As a result of the analysis, there are some cases of inconsistencies between Earth science II and Korean geography textbooks in terms of terminologies, names, and distribution ranges related to the tectonic provinces of the Korean Peninsula. The Korean geography textbooks had inconsistencies in the geochronologic data of the rocks as they cited outdated data. In addition, inconsistencies were found in the explanatory texts describing the 'distribution of rocks on the Korean Peninsula', 'characteristics of the Pyeongan Supergroup', and 'great hiatus of the Paleozoic Era'. Both Earth science and Geography have many concepts in common, therefore, effort is needed to minimize the differences in content. It is important to select the content appropriately which should reflect the latest scientific knowledge and presents the concepts consistently.

3-D Inversion of 3-D Synthetic DC Resistivity Data for Vein-type Ore Deposits (국내 맥상광체조사를 위한 3차원 전기비저항 모델링자료의 3차원 역산 해석)

  • Lee, Ho-Yong;Jung, Hyun-Key;Jeong, Woo-Don;Kwak, Na-Eun;Lee, Hyo-Sun;Min, Dong-Joo
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore-deposit survey in literature. Based on the fact that mineralized zone are generally more conductive than surrounding media, electrical resistivity survey among several geophysical surveys has been applied to investigate metallic ore deposits. Most of them are grounded on 2-D survey. However, 2-D inversion may lead to some misinterpretation for 3-D geological structures. In this study, we investigate the feasibility of the 3-D electrical resistivity survey to 3-D vein-type ore deposits. We first simulate 2-D dipole-dipole survey data for survey lines normal to the strike and 3-D pole-pole survey data, and then perform 3-D inversion. For 3-D ore-body structures, we assume a width-varying dyke, a wedge-shaped, and a fault model. The 3-D inversion results are compared to 2-D inversion results. By comparing 3-D inversion results for 2-D dipole-dipole survey data to 3-D inversion results for 3-D pole-pole survey data, we could note that the 2-D dipole-dipole survey data yield better inversion results than the 3-D pole-pole data, which is due to the main characteristic of the pole-pole array. From these results, we are convinced that if we have certain information on the direction of the strike, it would be desirable to apply 2-D dipole-diple survey for the survey lines normal to the strike. However, in most cases, we do not have any information on the direction of the strike, because we already developed the ore deposit with the outcrops and the remaining ore deposits are buried under the surface. In that case, performing 3-D pole-pole electrical resistivity survey would be a reasonable choice to obtain more accurate interpretation on ore body structure in spite of low resolution of pole-pole array.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF

Structural Analysis of the North Sobaegsan Massif in the Sangun-myeon area, Bonghwa-gun, Korea (봉화군 상운면지역에서 북부 소백산육괴의 지질구조 해석)

  • 강지훈;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.254-270
    • /
    • 2000
  • To clarify the geological structure of North Sobaegsan Massif in the Sangunmyeon area, Bonghwagun, Korea, where the Yecheon Shear Zone passes and the NE-SW and E-W trending structural lineaments are developed, the rock-structures of its main constituent rocks(Precambrian Won-nam Formation and Mesozoic Hornblende Granite) were examined. In this area, the geological structure was formed at least by four phases of deformation after the formation of gneissosity or schistosity of the Wonnam Formation: one deformation before D2 ductile shearing related to the for-mation of the Yecheon Shear Zone and two deformations after that. The NE-SW and E-W trending structural lineaments were formed by a giant open or gentle type of F4 fold, and their trends before D4 deformation are interpreted to be parallel to the orientation(ENE-WSW trend) of folded surface in the F4 hinge zone. The structural features of Dl-D3 deformations and their relative occurrence times are as follows. Dl deformation is formative period of the boudin structures and ENE-WSW trending isoclinal folds with sub-horizontal hinge lines and steeply inclined axial surfaces. D2 deformation is that of the mylonite foliation, stretching lineation and Z-shaped asymmetric folds related to top-to-the ENE dextral strike-slip shearing on the distinct foliations of Wonnam Formation(after intrusion of Mesozoic Hornblende Granite). D3 deformation is that of the ENE trending S-shaped asymmetric folds with sub-horizontal hinge lines and axial surfaces related to normal-slip shearing on the distinct foliations. It is expected that the result will be contributed to as valuable data for interpreting the tectonic evolution of the North Sobaegsan Massif and the Northeast Ogcheon Belt whose tectonic lineaments are changed from NE-SW to E-W trends at the Sindong-Bonghwa line.

  • PDF

A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea (동해의 메탄 하이드레이트 매장 지역에서의 해양 심부 견인 전기비저항 탐사)

  • Goto, Tada-Nori;Kasaya, Takafumi;Machiyama, Hideaki;Takagi, Ryo;Matsumoto, Ryo;Okuda, Yoshihisa;Satoh, Mikio;Watanabe, Toshiki;Seama, Nobukazu;Mikada, Hitoshi;Sanada, Yoshinori;Kinoshita, Masataka
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • We have developed a new deep-towed marine DC resistivity survey system. It was designed to detect the top boundary of the methane hydrate zone, which is not imaged well by seismic reflection surveys. Our system, with a transmitter and a 160-m-long tail with eight source electrodes and a receiver dipole, is towed from a research vessel near the seafloor. Numerical calculations show that our marine DC resistivity survey system can effectively image the top surface of the methane hydrate layer. A survey was carried out off Joetsu, in the Japan Sea, where outcrops of methane hydrate are observed. We successfully obtained DC resistivity data along a profile ${\sim}3.5\;km$ long, and detected relatively high apparent resistivity values. Particularly in areas with methane hydrate exposure, anomalously high apparent resistivity was observed, and we interpret these high apparent resistivities to be due to the methane hydrate zone below the seafloor. Marine DC resistivity surveys will be a new tool to image sub-seafloor structures within methane hydrate zones.

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF