• Title/Summary/Keyword: Geological

Search Result 3,323, Processing Time 0.213 seconds

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.

Marine Terraces and Quaternary Faults in the Homigot and the Guryongpo, SE Korea (호미곶과 구룡포지역 해안단구와 신기지구조운동)

  • Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.231-240
    • /
    • 2016
  • Three Quaternary faults have been revealed in marine terraces nearby the Homigot and the Gurongpo in the southeastern offshore of Korean Peninsula. The Hajung fault cuts the $4^{th}$ marine terraces and the Guman fault the $2^{nd}$, respectively. The Hajung fault strikes $N55^{\circ}$ to $45^{\circ}W$ and dips $40^{\circ}$ to $45^{\circ}NE$ with reverse-displacement of 180cm vertically. There are four sets of colluvial sediment strata that would be produced by faulting and indicate four times of fault movements during MIS 7 and MIS 5c. The Guman fault site consists of three sets of reverse faults that strike $N80^{\circ}E$ to $N70^{\circ}W$ and dip $25^{\circ}{\sim}35^{\circ}SE$ to $30^{\circ}SW$ with vertical displacement of 9~18 cm. The Guman faulting occurred during 80 ka (MIS 5a) to 71 ka (MIS 4) but it extends only to the lowest bed, the pebble sand bed, lay just on the unconformity, and not to the upper. Considering the attitude of the faults, we inferred that the Hajung fault was activated under the ENE-WSW compression during MIS 7 to MIS 5c and the Guman under N-S trending compression during MIS 5a. Using the OSL age dating results, we reconfirmed that the $2^{nd}$ terrace is correlated to MIS 5a and the $4^{th}$ terraces to MIS 7.

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.

Discrete element simulations of continental collision in Asia (아시아 대륙충돌의 개별요소 시뮬레이션)

  • Tanaka Atsushi;Sanada Yoshinori;Yamada Yasuhiro;Matsuoka Toshifumi;Ashida Yuzuru
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Analogue physical modelling using granular materials (i.e., sandbox experiments) has been applied with great success to a number of geological problems at various scales. Such physical experiments can also be simulated numerically with the Discrete Element Method (DEM). In this study, we apply the DEM simulation to the collision between the Indian subcontinent and the Eurasian Plate, one of the most significant current tectonic processes in the Earth. DEM simulation has been applied to various kinds of dynamic modelling, not only in structural geology but also in soil mechanics, rock mechanics, and the like. As the target of the investigation is assumed to be an assembly of many tiny particles, DEM simulation makes it possible to treat an object with large and discontinuous deformations. However, in DEM simulations, we often encounter difficulties when we examine the validity of the input parameters, since little is known about the relationship between the input parameters for each particle and the properties of the whole assembly. Therefore, in our previous studies (Yamada et al.,2002a,2002b,2002c), we were obliged to tune the input parameters by trial and error. To overcome these difficulties, we introduce a numerical biaxial test with the DEM simulation. Using the results of this numerical test, we examine the validity of the input parameters used in the collision model. The resulting collision model is quite similar to the real deformation observed in eastern Asia, and compares well with GPS data and in-situ stress data in eastern Asia.

Highly efficient CMP surveying with ground-penetrating radar utilising real-time kinematic GPS (실시간 GPS를 이용한 고효율 GPR CMP 탐사)

  • Onishi Kyosuke;Yokota Toshiyuki;Maekawa Satoshi;Toshioka Tetsuma;Rokugawa Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 2005
  • The main purpose of this paper is to describe a highly efficient common mid-point (CMP) data acquisition method for ground-penetrating radar (GPR) surveying, which is intended to widen the application of GPR. The most important innovation to increase the efficiency of CMP data acquisition is continuous monitoring of the GPR antenna positions, using a real-time kinematic Global Positioning System (RTK-GPS). Survey time efficiency is improved because the automatic antenna locating system that we propose frees us from the most time-consuming process-deployment of the antenna at specified positions. Numerical experiments predicted that the data density and the CMP fold would be increased by the increased efficiency of data acquisition, which results in improved signal-to-noise ratios in the resulting data. A field experiment confirmed this hypothesis. The proposed method makes GPR surveys using CMP method more practical and popular. Furthermore, the method has the potential to supply detailed groundwater information. This is because we can convert the spatially dense dielectric constant distribution, obtained by using the CMP method we describe, into a dense physical value distribution that is closely related to such groundwater properties as water saturation.

Evaluation on Natural Background of the Soil Heavy Metals in Korea (우리나라 토양의 중금속 자연배경농도 평가)

  • Yoon, Jeong-Ki;Kim, Dong-Ho;Kim, Tae-Seung;Park, Jong-Gyum;Chung, Il-Rok;Kim, Jong-Ha;Kim, Hyuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • This study was conducted in order to get the scientific background for soil pollution criteria. The 92 soil samples derived from various geological units were taken and analyzed to survey natural heavy metal background levels using aqua regia digestion method and 0.1N HCl extraction method. From these results, the average natural contents of metals were 0.287 mg/kg for Cd, 15.26 mg/kg for Cu, 18.43 mg/kg for Pb, 25.36 mg/kg for Cr, 54.27 mg/kg for Zn, 17.68 mg/kg for Ni, 6.83 mg/kg for As by the aqua regia method, and 0.040 mg/kg for Cd, 0.48 mg/kg for Cu, 3.06 mg/kg for Pb, 0.09 mg/kg for Cr, 1.54 mg/kg for Zn, 0.27 mg/kg for Ni, 0.089 mg/kg for As by the 0.1N HCl extraction method. Ratios of soluble contents and total contents were Cd 0.14, Cu 0.03, Pb 0.17, Cr 0.004, Zn 0.03, Ni 0.02, As 0.013 and the correlation coefficients of soluble contents and total contents were 0.24(As), 0.88(Cd), 0.43(Cr), 0.65(Cu), 0.70(Pb), 0.61(Ni), 0.24(Zn). The correlation factor decreased in the order of Cd > Pb > Cu > Ni > Cr > Zn $\approx$ As.

A Study on the Impermeability of Ground using N.D.S and S.M.I methods (N.D.S공법과 S.M.I공법을 이용한 지반차수 방법에 관한 연구)

  • Kim, Ji-Hwan;Kim, Joon-Jeong;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.87-92
    • /
    • 2011
  • This paper describes a study on the permeability reduction of the riverbed ground during urban railway tunnel construction. The research is mainly concentrated on the study of the grouting or injection methods among permeability reduction methods which can be adapted in the riverbed ground. The design technology of grouting methods considering the long term hydro-geological behaviour in the riverbed, was suggested. Two injection methods namely, Natural Durable Stabilizer (N.D.S) and Space-Multi Injection Grouting (S.M.I) methods, were introduced as new approach methods which could be adapted to modify the riverbed ground. In order to evaluate the performance of the improved ground by the N.D.S and S.M.I method, a series of pilot tests including the field and laboratory permeability tests, were carried out in the river crossing tunnel construction sites. The results obtained from pilot test program, were also reviewed. The results, the grouting efficiency of the S.M.I method using the non-alkalimeter silica sol is better than that of N.D.S method using cement. In addition, it is anticipated that the current research results are contributed to develop the grouting design technology.

Case study of design and construction for cutter change in EPB TBM tunneling (EPB 쉴드 TBM 커터 교체 설계 및 시공 사례 분석)

  • Lee, Jae-won;Kang, Sung-wook;Jung, Jae-hoon;Kang, Han-byul;Shin, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.553-581
    • /
    • 2022
  • Shortly after tunnel boring machine (TBM) was introduced in the tunneling industry, the use of TBM has surprisingly increased worldwide due to its performance together with the benefit of being safely and environmentally friendly. One of the main cost items in the TBM tunneling in rock and soil is changing damaged or worn cutters. It is because that the cutter change is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate and has a major effect on the total time and cost of TBM tunneling projects. Therefore, the importance of accurately evaluating the cutter life can never be overemphasized. However, the prediction of cutter wear in soil, rock including mixed face is very complex and not yet fully clarified, subsequently keeping engineers busy around the world. Various prediction models for cutter wear have been developed and introduced, but these models almost usually produce highly variable results due to inherent uncertainties in the models. In this study, a case study of design and construction of disc cutter change is introduced and analyzed, rather than proposing a prediction model of cutter wear. As the disc cutter is strongly affected by the geological condition, TBM machine characteristic and operation, authors believe it is very hard to suggest a generalized prediction model given the uncertainties and limitations therefore it would be more practical to analyze a real case and provide a detailed discussion of the difference between prediction and result for the cutter change. By doing so, up-to-date idea about planning and execution of cutter change in practice can be promoted.

Numerical Analysis of Railway Roadbed Stability with Respect to Underground Cavities and Rock Condition: A Case Study of Shafts at Majang Mine (전산해석을 통한 지하 공동 및 암반 조건에 따른 철도지반 안정성 평가: 마장광산 갱도를 대상으로)

  • Jang, Kyunghwan;Lee, Dongwon;Min, Kyungnam;Chung, Chanmook;Yu, Jaehyung;Lee, Gyeseung
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.295-306
    • /
    • 2021
  • This study used numerical modeling to investigate the stability of railway roadbed in areas with various underground cavities and rock conditions associated with mining activities. It compared combined loads from both passenger and freight trains with loads from only passenger trains. Stability was assessed with reference to the Korean government standards for railway subsidence allowance and railway warping repair. Sufficient stability regarding the railway subsidence allowance standard was not achieved when cavities were at depths of <5 m. The criteria for requiring railway warping repair were met when cavities were at depths of <15 m, depending on the rock fracture condition. This study provides the first report on systematic analysis land subsidence related to cavity size and rock fracture conditions associated with mining activities. We expect that this study could serve as an important reference for railway construction in mining areas.

REDUCING LATENCY IN SMART MANUFACTURING SERVICE SYSTEM USING EDGE COMPUTING

  • Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system