• Title/Summary/Keyword: Geocoding Error

Search Result 6, Processing Time 0.022 seconds

Development of Geocoding and Reverse Geocoding Method Implemented for Street-based Addresses in Korea (우리나라 도로명주소를 활용한 지오코딩 및 역 지오코딩 기법 개발)

  • Seok, Sangmuk;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.33-42
    • /
    • 2016
  • In Korea, the address-point matching technique has been used to provide geocoding services. In fact, this technique brings the high positional accuracy. However, the quality of geocoding result can be limited, since it is significantly affected by data quality. Also, it cannot be used for the 3D address geocoding and the reverse geocoding. In order to alleviate issues, the paper has implemeted proposed geocoding methods, based on street-based addresses matching technique developed by US census bureau, for street-based addresses in Korea. Those proposed geocoding methods are illustrated in two ways; (1) street address-matching method, which of being used for not only 2D addresses representing a single building but also 3D addresses representing indoor space or underground building, and (2) reverse geocoding method, whichas converting a location point to a readable address. The result of street-based address geocoding shows 82.63% match rates, while the result of reverse geocoding shows 98.5% match rates within approximately 1.7(m) the average position error. According to the results, we could conclude that the proposed geocoding techniques enable to provide the LBS(Location Based Service). To develop the geocoding methods, the study has perfoermed by ignoring the parsing algorithms for address standardization as well as the several areas with unusual addresses, such as sub-urban areas or subordinate areas to the roads, etc. In the future, we are planning the improved geocoding methods for considering these cases.

Fast Geocoding of UAV Images for Disaster Site Monitoring (재난현장 모니터링을 위한 UAV 영상 신속 지오코딩)

  • Nho, Hyunju;Shin, Dong Yoon;Sohn, Hong-Gyoo;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1221-1229
    • /
    • 2020
  • In urgent situations such as disasters and accidents, rapid data acquisition and processing is required. Therefore, in this study, a rapid geocoding method according to EOP (Exterior Orientation Parameter) correction was proposed through pattern analysis of the initial UAV image information. As a result, in the research area with a total flight length of 1.3 km and a width of 0.102 ㎢, the generation time of geocoding images took about 5 to 10 seconds per image, showing a position error of about 8.51 m. It is believed that the use of the rapid geocoding method proposed in this study will help provide basic data for on-site monitoring and decision-making in emergency situations such as disasters and accidents.

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.

Error Budget Analysis for Geolocation Accuracy of High Resolution SAR Satellite Imagery (고해상도 SAR 영상의 기하 위치정확도 관련 중요변수 분석)

  • Hong, Seung Hwan;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.447-454
    • /
    • 2013
  • The geolocation accuracy of SAR satellite imagery is affected by orbit and sensor information and external variables such as DEM accuracy and atmospheric delay. To predict geolocation accuracy of KOMPSAT-5 and KOMPSAT-6, this paper uses TerraSAR-X imagery which has similar spec. Simulation data for sensitivity analysis are generated using range equation and doppler equation with several key error sources. As a result of simulation analysis, the effect of sensor information error is larger than orbit information error. Especially, onboard electronic delay needs to be monitored periodically because this error affects geolocation accuracy of slant range direction by 30m. Additionally, DEM accuracy causes geolocation error by 20~30m in mountainous area and atmospheric delay can occur by 5m in response to atmospheric condition and incidence angle.

Development of Unwrapped InSAR Phase to Height Conversion Algorithm (레이더 간섭위상의 정밀고도변환 알고리즘 개선)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.227-235
    • /
    • 2012
  • The InSAR (Interferometric SAR) processing steps for DEM generation consist of the coregistration of two SAR data, interferogram generation, phase filtering, phase unwrapping, phase to height conversion, and geocoding, etc. In this study, we developed the precise algorithm for phase to height conversion, including the ambiguity method taking into account Earth ellipsoid, Schw$\ddot{a}$visch method, and the refined ambiguity method suitable for the interferometric pair with non-parallel obit. From the testing with JERS-1 orbit we found that the height error by traditional ambiguity method reaches to about 40 m during phase to height conversion. The proposed methods are very useful in generating precise InSAR DEM;especially in the case of using non-parallel InSAR pair due to unstable orbit control such as JERS-1 or intentional orbit control such as Cross-InSAR pair between ERS2 and ENVISAT satellite.

Geocoding of the Free Stereo Mosaic Image Generated from Video Sequences (비디오 프레임 영상으로부터 제작된 자유 입체 모자이크 영상의 실좌표 등록)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Park, Jun-Ku;Kim, Jung-Sub;Koh, Jin-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2011
  • The free-stereo mosaics image without GPS/INS and ground control data can be generated by using relative orientation parameters on the 3D model coordinate system. Its origin is located in one reference frame image. A 3D coordinate calculated by conjugate points on the free-stereo mosaic images is represented on the 3D model coordinate system. For determining 3D coordinate on the 3D absolute coordinate system utilizing conjugate points on the free-stereo mosaic images, transformation methodology is required for transforming 3D model coordinate into 3D absolute coordinate. Generally, the 3D similarity transformation is used for transforming each other 3D coordinates. Error of 3D model coordinates used in the free-stereo mosaic images is non-linearly increased according to distance from 3D model coordinate and origin point. For this reason, 3D model coordinates used in the free-stereo mosaic images are difficult to transform into 3D absolute coordinates by using linear transformation. Therefore, methodology for transforming nonlinear 3D model coordinate into 3D absolute coordinate is needed. Also methodology for resampling the free-stereo mosaic image to the geo-stereo mosaic image is needed for overlapping digital map on absolute coordinate and stereo mosaic images. In this paper, we propose a 3D non-linear transformation for converting 3D model coordinate in the free-stereo mosaic image to 3D absolute coordinate, and a 2D non-linear transformation based on 3D non-linear transformation converting the free-stereo mosaic image to the geo-stereo mosaic image.