• Title/Summary/Keyword: Geochemical disaster

Search Result 12, Processing Time 0.03 seconds

Geochemical evidence for K-metasomatism related to uranium enrichment in Daejeon granitic rocks near the central Ogcheon Metamorphic Belt, Korea

  • Hwang, Jeong;Moon, Sang-Ho
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1001-1013
    • /
    • 2018
  • A new type of uranium occurrence in Korea was identified in pegmatitic and hydrothermally altered granite in the Daejeon area. The U-bearing parts typically include muscovite, pink-feldspar and sericite as alteration minerals. In this study, the geochemical characteristics and alteration age of the granitic rocks were examined to provide evidence for hydrothermally-enriched uranium. The K-Ar ages of muscovite coexisting with U-bearing minerals were determined as 123 and 128 Ma. The U-bearing rocks have relatively low ($CaO+Na_2O$), high $K_2O$ contents, and high alteration index values by major element geochemistry. The trace element geochemistry shows that the uraniferous rocks have significantly low Th/U ratios and strongly differentiated features. The rare earth element patterns indicate that the uraniferous rocks have a low total REE and LREE contents with depletion of Eu. Considering the geochemical variation of the granitic rock major, trace and rare earth elements, it can be concluded that uranium enrichment in pegmatites and altered granite should be genetically related to post-magmatic hydrothermal alteration of K-metasomatism after emplacement of the two-mica granite. This is the first report for geochemical characteristics of Mesozoic granite-related U-occurrences in South Korea. This study will help further research for uranium deposits with similarities in geological setting, mineralogy and age data between South China and Korea, and can also be expected to help solve the source problems related to high uranium concentrations in some groundwater occurring in the granitic terrane.

Comparative Study on Geochemical Characteristics of Stream Sediments and Mylonitic Granites in the Unbong Area (운봉지역 하상퇴적물과 압쇄상화강암류의 지구화학적 특성 비교연구)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Kim, Sung-Won
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.727-738
    • /
    • 2007
  • The present study investigation the geochemical characteristics of the stream sediments in the Unbong area was conducted to enable a understanding the natural background and a prediction the prospects of geochemical disaster as a result of that bed rocks(mylonitic granites, Kim et al., 1992). We systematically collected seventy three stream sediments samples by wet sieving along the primary channels. Major, trace and rare earth element(REE) concentrations, combined with mineralogical characteristics, were determined by XRD, XRF, ICP-AES and NAA analysis methods. Major element concentrations for the stream sediments in the Unbong area were $SiO_2\;36.94{\sim}65.39wt.%,\;Al_2O_3\;10.15{\sim}21.77wt.%,\;Fe_2O_3\;3.17{\sim}10.90wt.%,\;CaO\;0.55{\sim}5.27wt.%,\;MgO\;0.52{\sim}4.94wt.%,\;K_2O\;1.38{\sim}4.54wt.%,\;Na_2O\;0.49{\sim}3.36wt.%,\;TiO_2\;0.39{\sim}1.27wt.%,\;MnO\;0.04{\sim}0.22wt.%,\;P_2O_5\;0.08{\sim}0.54wt.%$. Trace and REE concentrations for the stream sediments were $Cu\;4.8{\sim}134ppm,\;Pb\;24.2{\sim}82.5ppm,\;Sr\;95.9{\sim}739ppm,\;V\;19.9{\sim}124ppm,\;Zr\;52.9{\sim}145ppm,\;Li\;25.2{\sim}3.3ppm,\;Co\;3.87{\sim}50.0ppm,\;Cr\;17.4{\sim}234ppm,\;Hf\;3.93{\sim}25.2ppm,\;Sc\;4.60{\sim}20.6ppm,\;Th\;3.82{\sim}36.9ppm,\;Ce\;45.7{\sim}243ppm,\;Eu\;0.89{\sim}2.69ppm,\;Yb\;1.42{\sim}5.18ppm$. According to the comparison of average major element concentrations, CaO, $Na_2O\;and\;K_2O$ contents are higher in stream sediments than in bed rocks(mylonitic granites, Kim et al., 1992) $Al_2O_3\;and\;SiO_2$ contents show good correlation both stream sediments and bed rocks(mylonitic granites, Kim et al., 1992). Yb and Eu in the stream sediments show a positive correlation with $SiO_2$. In contrast, the stream sediments display a negative correlation.

Geochemical Characteristics of Stream Sediments in the Konyang Area (곤양지역 하상퇴적물에 대한 지구화학적 특성)

  • Park Yaung-Seog;Park Dae-Woo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.329-342
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics for the stream sediments in the Konyang area. So we can estimate the environment contamination and understand geochemical disaster. We collect the stream sediments samples by wet sieving along the primary channels and slowly dry the collected samples in the laboratory and grind to pass a 200mesh using an alumina mortar and pestle for chemical analysis. Mineralogy, major, trace and rare earth elements are determined by XRD, XRE, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological groups of stream sediments, the studied area was grouped into quartz porphyry area, sedimentary rock area, anorthosite area and gneiss area. Contents of major elements for the stream sediments in the Konyang area were $SiO_2\;41.86{\sim}76.74\;wt.%,\;Al_{2}O_{3}\;9.92{\sim}30.00\;wt.%,\;Fe_{2}O_{3}\;2.74{\sim}12.68\;wt.%,\;CaO\;0.22{\sim}3.31\;wt.%,\;MgO\;0.34{\sim}3.97\;wt.%,\;K_{2}O\;0.75{\sim}0.93\;wt.%,\;Na_{2}O\;0.25{\sim}1.92\;wt.%,\;TiO_{2}\;0.40{\sim}3.00\;wt.%,\;MnO\;0.03{\sim}0.21\;wt.%,\;P_{2}O_{5}\;0.05{\sim}0.38\;wt.%$. The contents of trace and rare earth elements for the stream sediments were $Cu\;7{\sim}102\;ppm,\;Pb\;15{\sim}47\;ppm,\;Sr\;48{\sim}513\;ppm,\;V\;29{\sim}129\;ppm,\;Zr\;31{\sim}217\;ppm,\;Li\;14{\sim}94\;ppm,\;Co\;5.6{\sim}32.1\;ppm,\;Cr\;23{\sim}259\;ppm,\;Cs\;1.7{\sim}8.7\;ppm,\;Hf\;2.1{\sim}109.0\;ppm,\;Rb\;34{\sim}247\;ppm,\;Sc\;4.5{\sim}21.9\;ppm,\;Zn\;24{\sim}609\;ppm,\;Sb\;0.8{\sim}2.6\;ppm,\;Th\;3{\sim}213\;ppm,\;Ce\;22{\sim}1000\;ppm,\;Eu\;0.7{\sim}5.3\;ppm,\;Yb\;0.6{\sim}6.4\;ppm$. Generally, the contents of $Al_{2}O_{3}\;and\;SiO_2$ had a good relationships with each other in rocks but it had a bad relationships in stream sediments for this study area. The contents of $Fe_{2}O_3$, CaO, MnO and $P_{2}O_{5}$ had a good relationships with major and minor elements in stream sediments of this study area. The contents of Co and V in the stream sediments had a good relationships with other toxic elements.

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Cheongpung Area (기반암에 따른 청풍지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Song, Yeung-Sang;Lee, Jang-Jon
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.675-687
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics of the stream sediments in the Cheongpung area. So that we can understand the natural background and predict the prospects of geochemical disaster, if any. We collected the stream sediments samples by wet sieving along the primary channels and slow dried the collected samples in the laboratory and ground them to pass a 200 mesh using an alumina mortar and pestle for chemical analysis. Miner-alogical characteristics, major, trace and rare earth elements were determined by XRD, XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological group of stream sediments, the studied area was grouped into granitic gneiss area, metatectic gneiss area, Dado tuff area, Yuchi conglomerate area, and Neungju flow area in the Cheongpung area. Contents of major elements for the stream sediments in the Cheongpung area were $SiO_2\;47.31{\sim}72.81\;wt.%,\;A1_2O_3 \;11.26{\sim}21.88\;wt.%,\;Fe_2O_3\;2.83{\sim}8.39\;wt.%,\;CaO\;0.34{\sim}7.54\;wt.%,\;MgO\; 0.55{\sim}3.59\;wt.%,\;K_2O\;1.71{\sim}4.31\;wt.%,\;Na_2O\;0.56{\sim}2.28\;wt.%,\;TiO_2\;0.46{\sim}1.24\;wt.%,\;MnO\;0.04{\sim}0.27\;wt.%,\;P_2O_5\;0.02{\sim}0.45\;wt.%$. The con-tents of trace and rare earth elements for the stream sediments were $Ba\;700ppm{\sim}8990ppm,\;Be\;1.0{\sim}3.50ppm,\;Cu\;6.20{\sim}60ppm,\;Nb\;12{\sim}28ppm,\;Ni\;4.4{\sim}61ppm,\;Pb\;13{\sim}34ppm,\;Sr\;65{\sim}787ppm,\;V\;4{\sim}98ppm,\;Zr\;32{\sim}164ppm,\;Li\;21{\sim}827ppm,\;Co\;3.68{\sim}65ppm,\;Cr\;16.7{\sim}409ppm,\;Cs\;2.72{\sim}37.1ppm,\;Hf\;4.99{\sim}49.2ppm,\;Rb\;71.9{\sim}649ppm,\;Sb\;0.16{\sim}5.03ppm,\;Sc\;4.97{\sim}52ppm,\;Zn\;26.3{\sim}375ppm,\;Ce\;60.6{\sim}373ppm,\;Eu\;0.82{\sim}6ppm,\;Yb\;0.71{\sim}10ppm$.

Occurrence Characteristics of Uranium and Radon-222 in Groundwater at ○○ Village, Yongin Area (용인 ○○마을 지하수내 우라늄 및 라돈-222의 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yong Cheon;Lee, Yu Jin;Cho, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.261-276
    • /
    • 2016
  • The occurrence of natural radioactive materials such as uranium and radon-222 in groundwater was examined with hydrogeochemistry and geology at ○○ village in the Yongin area. Two rounds of 19 groundwater and 5 surface water sampling were collected for analysis. The range of pH value in groundwaters was 5.81 to 7.79 and the geochemical types of the groundwater were mostly Ca(Na)-HCO3 and Ca(Na)-NO3(Cl)-HCO3. Uranium and radon-222 concentrations in the groundwater ranged from 0.06 to 411 μg/L and from 5.56 to 903 Bq/L, respectively. Two deep groundwaters used as common potable well-water sources exceeded the maximum contaminant levels of the uranium and radon-222 proposed by the United States Environmental Protection Agency (US EPA). Three groundwater samples from residential areas contained unsuitable levels of uranium, and 12 groundwater samples were unsuitable due to radon-222 concentrations. Radioactive materials in the unsuitable groundwater are naturally occurring in a Jurassic amphibole- and biotite-bearing granitic gneiss. High uranium and radon-222 groundwater concentrations were only observed in two common wells; the others showed no relationship between bedrock geology and groundwater geochemical constituents. With such high concentrations of naturally occurring radioactive materials in groundwater, the affected areas may extend tens of meters for uranium and even farther for radon-222. Therefore, we suggest the radon-222 and the uranium did not originate from the same source. Based on the distribution of radon-222 in the study area, zones of higher radon-222 concentrations may be the result of diffusion through cracks, joint, or faults. Surface radioactivity and uranium concentrations in the groundwater show a positive relationship, and the impact areas may extend for ~200m beyond the well in the case of wells containing high concentrations of uranium. The highest uranium and thorium concentrations in rock samples were detected in thorite and monazite.

A Study on Integrated Assessment of Baekdu Mountain Volcanic Aisaster risk Based on GIS (GIS기법을 이용한 백두산 화산재해 종합평가 연구)

  • Xiao-Jiao, Ni;Choi, Yun Soo;Ying, Nan
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.77-87
    • /
    • 2014
  • Recently there are many disasters caused by volcanic activities such as the eruptions in Tungurahua, Ecuador(2014) and $Eyjafjallaj\ddot{o}kull$, Iceland(2010). Therefore, it is required to prepare countermeasures for the disasters. This study analyzes the Baekdu Mountain area, where is the risky area because it is active volcano, based on the observed data and scientific methods in order to assess a risk, produce a hazard map and analyze a degree of risk caused by the volcano. Firstly, it is reviewed for the research about the Baekdu mountain volcanic eruption in 1215(${\pm}15$ years) done by Liu Ruoxin. And the factors causing volcanic disaster, environmental effects, and vulnerability of Baekdu Mountain are assessed by the dataset, which includes the earthquake monitoring data, the volcanic deformation monitoring data, the volcanic fluid geochemical monitoring data, and the socio-economic statistics data. A hazard, especially caused by a volcano, distribution map for the Baekdu Mountain Area is produced by using the assessment results, and the map is used to establish the disaster risk index system which has the four phases. The first and second phases are very high risky area when the Baekdu Mountain erupts, and the third and fourth phases are less dangerous area. The map shows that the center of mountain has the first phase and the farther area from the center has the lower phase. Also, the western of Baekdu Mountain is more vulnerable to get the risk than the eastern when the factors causing volcanic disasters are equally applied. It seems to be caused by the lower stability of the environment and the higher vulnerability.

Organic Carbon Cycling in Ulleung Basin Sediments, East Sea (동해 울릉분지 퇴적물에서 유기탄소 순환)

  • Lee, Tae-Hee;Kim, Dong-Seon;Khim, Boo-Keun;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.145-156
    • /
    • 2010
  • This study investigated organic carbon fluxes in Ulleung Basin sediments, East Sea based on a chamber experiment and geochemical analyses. At depths greater than 2,000 m, Ulleung Basin sediments have high organic carbon contents (over 2.0%). Apparent sedimentation rates (ASR) calculated from excess $^{210}Pb$ activity distribution, varied from 0.036 to $0.047\;cm\;yr^{-1}$. The mass accumulation rates (MAR) calculated from porosity, grain density (GD), and ASR, ranged from 131 to $184\;g\;m^{-2}\;yr^{-1}$. These results were in agreement with sediment trap results obtained at a water depth of 2100 m. Input fluxes of organic carbon varied from 7.89 to $11.08\;gC\;m^{-2}\;yr^{-1}$ at the basin sediments, with an average of $9.56\;gC\;m^{-2}\;yr^{-1}$. Below a sediment depth of 15cm, burial fluxes of organic carbon ranged from 2.02 to $3.10\;gC\;m^{-2}\;yr^{-1}$. Within the basin sediments, regenerated fluxes of organic carbon estimated with oxygen consumption rate, varied from 6.22 to $6.90\;gC\;m^{-2}\;yr^{-1}$. However, the regenerated fluxes of organic carbon calculated by subtracting burial flux from input flux, varied from 5.87 to $7.98\;gC\;m^{-2}\;yr^{-1}$. Respectively, the proportions of the input flux, regenerated flux, and burial flux to the primary production ($233.6\;gC\;m^{-2}\;yr^{-1}$) in the Ulleung Basin were about 4.1%, 3.0%, and 1.1%. These proportions were extraordinarily higher than the average of world open ocean. Based upon these results, the Ulleung Basin might play an integral role in the deposition and removal of organic carbon.

Geological Review on the Distribution and Source of Uraniferous Grounwater in South Korea (국내 고함량 우라늄 지하수의 분포와 기원에 관한 지질학적 고찰)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.593-603
    • /
    • 2018
  • The most of groundwater with high U-concentration occur in the Jurassic granite of Gyeonggi massif and Ogcheon belt, and some of them occur in the Cretaceous granite of Ogcheon belt. On the contrary, they do not occur in the Jurassic granite of Yeongnam massif and the Cretaceou granite of Gyeongsang basin. The Jurassic and Cretacous granite, the host rock of high U-groundwater, were resulted from parental magma with high ratio of crustal material and highly differentiated product of fractional crystalization. These petrogenetic characteristics explain the geological evidence for preferential distribution of uraniferous groundwater in each host rock. It were reported recently that high U-content, low Th/U ratio and soluble mineral occurrence of uraninite in the two-mica granite of Daejeon area which have characteristics of S-type peraluminous and highly differntiated product. It is the mineralogical-geochemical evidences supporting the fact that the two-mica granite is the effective source of uranium in groundwater. The biotite granite and two-mica granite of Jurassic age were reported as biotite granite in many geological map even though two-mica granite occur locally. This fact suggest that the influence of two-mica granite can not be ignored in uraniferous groundwater hosted by biotite granite.

Hydrochemistry and Occurrences of Natural Radioactive Materials from Groundwater in Various Geological Environment (다양한 지질환경에서 지하수의 수리화학 및 자연방사성물질 산출특성)

  • Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk;Choi, Hyeon Young
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.531-549
    • /
    • 2016
  • The purpose of this study is to analyze the relationship of hydrochemistry, geology, fault with occurrence of uranium and radon-222 from the groundwater in the Yeongdong area. In this study, 49 groundwater and 4 surface water samples collected in the study area were collected on two separate occasions. The surface radioactivities were measured at 40 points to know the relationship between the occurrence of uranium in groundwater and surface geology. The chemical composition of groundwater showed three types : $Ca-HCO_3$, $Na-HCO_3$ and $Ca-HCO_3(SO_4,\;NO_3)$. Two groundwater of 49 samples exceeded the maximum contaminant levels of uranium, $30{\mu}g/L$, proposed by the Ministry of Environment of Korea and 11 groundwater of 40 samples for Rn-222 concentrations exceeded the 148 Bq/L maximum contaminant level of US EPA. Most of unsuitable groundwater are located in the geological boundary related with the biotite gneiss and the surface radioactivities of rock samples showed no relationship with groundwater geochemical constituents. The strike-slip fault, Youngdong fault, is $N45^{\circ}E$ direction and the high concentrations of uranium in upper part of fault, consisted of granite and granitic gneiss are detected but in lower part, consisted of metamorphic sedimentary rock are not detected. It suggests that the natural radioactive concentrations are related with the geologic characteristics and the migration and diffusion of natural radioactive materials are affected by the fault.

Origin and Hydrochemical Characteristics of Natural Carbonated Water at Seoqwipo, Jeju Island (제주도 서귀포지역 천연탄산수의 기원과 수리화학특성)

  • Jeong, Chan Ho;Lee, Yong Cheon;Lee, Yu Jin;Choi, Hyeon Young;Koh, Gi Won;Moon, Duk Chul;Jung, Cha Youn;Jo, Si Beom
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.515-529
    • /
    • 2016
  • In this study, geochemical composition, CFCs (Chlorofluorocarbons), ${\delta}^{18}O$, ${\delta}D$, ${\delta}^{13}C$ isotopes and noble gases isotopes (He, Ne) were analyzed to determine their recharge age, source of $CO_2$ gas and noble gases of carbonated hot spring water and carbonated-water samples collected in the Seoqwipo of the Jeju. The pH of the carbonated waters ranges from 6.21 to 6.84, and the high electrical conductivity range ($1,928{\sim}4,720{\mu}S/cm$). Their chemical composition is classified as $Mg(Ca,\;Na)-HCO_3$ and $Na(Ca,\;Mg)-HCO_3$ types. As a result of the calculation of groundwater age using CFCs concentrations as an environmental tracer, the carbonated water and groundwater were estimated to be about 47.5~57.2 years and about 30.3~49.5 years, respectively. The ${\delta}^{13}C$ values of carbonated water range from -1.77 to -7.27‰, and are plotted on thr deep-seated field or the mixing field of the deep-seated and inorganic origin. Noble gases isotopic ($^3He/^4He$, $^4He/^{20}Ne$) ratio shows that helium gas of carbonated hot waters comes from deep-seated magma origin.