• Title/Summary/Keyword: Geocell shape

Search Result 2, Processing Time 0.016 seconds

Experimental Study for Determination of Horizontal Permeability with considering various Geocell Shapes (지오셀의 형상에 따른 수평투수계수 산정에 관한 실험적 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Kang, Hyoun-Hoi;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.285-292
    • /
    • 2010
  • Recently, it is difficult to find a good soil ground due to the shortage of land for new construction site. Because of this situation, the geosynthetics are commonly used for reinforcing the substructure of the soil ground, and hence improving the bearing capacity and reducing the settlement. The geocell is one of geosynthetics and is the advanced system of geogrid. It is the way to increase earth strength and bearing capacity by using three dimension type of geocomposite. In this paper, the Horizontal permeability was determined with considering various geocell shapes. The permeability test was performed by following method of ASTM D4716(87) and potential filling material for geocell was used. The bearing capacity mechanism which enhances the soil ground with evenly maintaining the degree of the compaction was also analyzed for geocell reinforced ground.

  • PDF

Numerical Modeling of Reinforced Soil with Waste Tirecell (타이어셀로 보강된 지반의 거동에 대한 수치모델링)

  • Yoon, Yeowon;Kyeon, Kwangsoo;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.5-12
    • /
    • 2008
  • In this research, the plate load tests on sand which is reinforced by Tirecell mat were simulated by finite element method (FEM). Tirecell mat made by waste tires has the same function and similar shape to Geocell for soil reinforcement and it can also be used for civil engineering structure. The results were compared with those of field plate load tests for evaluation of suitability of modeling method. From the comparison of both results, it can be seen that the settlements by FEM were very similar to test results with small margin under the ultimate bearing capacity. For the ultimate bearing capacities of two results, difference was very small. After the confirmation of the modelling, reinforcing effects with variation of cover depth and number of reinforcement layers by Tirecell were analyzed additionally. Reinforcing effect decreases with increasing soil cover depth, and this is similar to previous test results by soil cover depth. As the number of reinforcing layers increased, reinforcing effect increased. However at more than 2 reinforcing layers, reinforcing effect was negligible. In conclusion, the modeling method in this research might be used for analysis of reinforced structures using Tirecell mat.

  • PDF