• Title/Summary/Keyword: Geo-technology

Search Result 930, Processing Time 0.032 seconds

Distributional characteristics of Escherichia coli based on seasonal rainfall variations and extension of freshwater pollutant sources by salinity gradients at Ulsan Bay of Korea facing East Sea (동해 울산만에서 계절적 강우변화와 담수기원 오염원이 염분구배 및 유역별 대장균 분포에 미치는 영향)

  • Lee, Minji;Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.632-640
    • /
    • 2017
  • In order to understand the seasonal and geographical characteristics of environmental factors and distribution of Escherichia coli by salinity gradient due to precipitation, we investigated abiotic and biotic factors during four seasons from February 2013 to November 2015. The study area was divided into three different zones based on salinity gradient and geo-oceanographic characteristics. During the study period, water temperature, salinity, Chlorophyll a, and secchi-depth varied in the range of $8.5-26.1^{\circ}C$, 13.5-34.4 psu, $0.4-74.0{\mu}g\;L^{-1}$, and 0.5-10.0 m, respectively. Salinity was low at Zone I, which was influenced by water flux from Tae-hwa River, especially in 2014. Salinity was gradually increased (one-way ANOVA; p < 0.05) toward Zone III located offshore of the bay. The highest colony form of E. coli was detected at Zone I. E. coli maintained a relatively low level at Zone III during all seasons. E. coli was correlated with transparency (r = -0.36; p < 0.05) and salinity (r = -0.53; p < 0.01), implying that those parameters might play important roles in the proliferation of E. coli. These results indicated that E. coli were strongly affected by frequent rain (< 50 mm) around inner stations in Ulsan Bay of Korea.

A field Study to Evaluate Cooling Effects of Green Facade under Different Irrigation Conditions - Focusing on modular green facade planted with Hedera helix L and Pachysandra terminalis - (관수조절에 의한 벽면녹화의 냉각효과 분석 연구- 아이비, 수호초를 식재한 모듈형 벽면녹화를 중심으로-)

  • Kim, Eun-Sub;Yun, Seok-Hwan;Piao, Zheng-gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Lee, Young-Gu;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.121-132
    • /
    • 2021
  • Green facade has a significant impact on building's energy performance by controlling the absorption of solar radiation and improving outdoor thermal comfort through shading and evapotranspiration. In particular, since high-density building does not enough green space, green facade, and rooftop greening using artificial ground plants are highly utilized. However, the level of cooling effect according to plant traits and irrigation control is different. Therefore, in this study, the cooling effect analyzed for a total of 4 cases by controlling the irrigation condition based on hedera and spurge. Although hedera under sufficient water had the highest cooling effect(-2℃~-4℃), had the lowest cooling effect under non-irrigation(+1.1℃~+4.4℃). In addition, hedera under sufficient water had cooling effect than hedera under non-irrigation(-1℃~-8.1℃) and in the case of spurge, it had cooling effect(-0.3℃~-7.8℃) more than non-irrigation. As a result of measuring the amount of transpiration according to the light intensity (PAR) and carbon dioxide concentration conditions, transpiration of hedera was higher than the spurge (respectively 0.63204mmolm-2s-1, 0.674367mmolm-2s-1). The difference in the cooling effect of the green facade under irrigation condition was significant. But the potential cooling effect of green facade according to plants species was different. Therefore, in order to maximize and continuously provide the cooling effect of green facade in urban areas, it is necessary to consider the characteristics of plants and the control of water supply through the irrigation system.

Comparison of performance of automatic detection model of GPR signal considering the heterogeneous ground (지반의 불균질성을 고려한 GPR 신호의 자동탐지모델 성능 비교)

  • Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.341-353
    • /
    • 2022
  • Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.

Individual Ortho-rectification of Coast Guard Aerial Images for Oil Spill Monitoring (유출유 모니터링을 위한 해경 항공 영상의 개별정사보정)

  • Oh, Youngon;Bui, An Ngoc;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1479-1488
    • /
    • 2022
  • Accidents in which oil spills occur intermittently in the ocean due to ship collisions and sinkings. In order to prepare prompt countermeasures when such an accident occurs, it is necessary to accurately identify the current status of spilled oil. To this end, the Coast Guard patrols the target area with a fixed-wing airplane or helicopter and checks it with the naked eye or video, but it was difficult to determine the area contaminated by the spilled oil and its exact location on the map. Accordingly, this study develops a technology for direct ortho-rectification by automatically geo-referencing aerial images collected by the Coast Guard without individual ground reference points to identify the current status of spilled oil. First, meta information required for georeferencing is extracted from a visualized screen of sensor information such as video by optical character recognition (OCR). Based on the extracted information, the external orientation parameters of the image are determined. Images are individually orthorectified using the determined the external orientation parameters. The accuracy of individual orthoimages generated through this method was evaluated to be about tens of meters up to 100 m. The accuracy level was reasonably acceptable considering the inherent errors of the position and attitude sensors, the inaccuracies in the internal orientation parameters such as camera focal length, without using no ground control points. It is judged to be an appropriate level for identifying the current status of spilled oil contaminated areas in the sea. In the future, if real-time transmission of images captured during flight becomes possible, individual orthoimages can be generated in real time through the proposed individual orthorectification technology. Based on this, it can be effectively used to quickly identify the current status of spilled oil contamination and establish countermeasures.

Shear wave velocity of fiber reinforced cemented Toyoura silty sand

  • Safdar, Muhammad;Newson, Tim;Schmidt, Colin;Sato, Kenichi;Fujikawa, Takuro;Shah, Faheem
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.207-219
    • /
    • 2021
  • Several additives are used to enhance the geotechnical properties (e.g., shear wave velocity, shear modulus) of soils to provide sustainable, economical and eco-friendly solutions in geotechnical and geo-environmental engineering. In this study, piezoelectric ring actuators are used to measure the shear wave velocity of unreinforced, fiber, cemented, and fiber reinforced cemented Toyoura sand. One dimensional oedometer tests are performed on medium dense specimens of Toyoura sand-cement-fiber-silica flour mixtures with different percentages of silica flour (0-42%), fiber and cement (e.g., 0-3%) additives. The experimental results indicate that behavior of the mixtures is significantly affected by the concentration of silica flour, fiber and cement additives. Results show that with the addition of 1-3% of PVA fibers, the shear wave velocity increases by only 1-3%. However, the addition of 1-4% of cement increases the shear wave velocity by 8-35%. 10.5-21% increase of silica flour reduces the shear wave velocity by 2-5% but adding 28-42% silica flour significantly reduces the shear wave velocity by 12-31%. In addition, the combined effect of cement and fibers was also found and with only 2% cement and 1% fiber, the shear wave velocity increase was found to be approximately 24% and with only 3% cement and 3% fibers this increased to 35%. The results from this study for the normalized shear modulus and normalized mean effective stress agree well with previous findings on pure Toyoura sand, Toyoura silty sand, fiber reinforced, fiber reinforced cemented Toyoura sand. Any variations are likely due to the difference in stress history (i.e., isotropic versus anisotropic consolidation) and the measurement method. In addition, these small discrepancies could be attributed to several other factors. The potential factors include the difference in specimen sizes, test devices, methods of analysis for the measurement of arrival time, the use of an appropriate Ko to convert the vertical stresses into mean effective stress, and sample preparation techniques. Lastly, it was investigated that there is a robust inverse relationship between α factor and 𝞫0 exponent. It was found that less compressible soils exhibit higher 𝜶 factors and lower 𝞫0 exponents.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face (터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안)

  • Chuyen Pham;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.508-518
    • /
    • 2023
  • This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.

Development of a deep-learning based tunnel incident detection system on CCTVs (딥러닝 기반 터널 영상유고감지 시스템 개발 연구)

  • Shin, Hyu-Soung;Lee, Kyu-Beom;Yim, Min-Jin;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.915-936
    • /
    • 2017
  • In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.