• Title/Summary/Keyword: Geo-Spatial Data

Search Result 419, Processing Time 0.024 seconds

Correction of Geometric Distortion of Internet Aerial Imagery and Photo-Realistic 3D Building Modeling (인터넷 항공영상의 왜곡보정과 실감적 3차원 건물 모델링)

  • Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.687-695
    • /
    • 2011
  • Many internet portals provide maps with spatial information services. Recently, various images including aerial, satellite, street view, and photo-realistic 3D city models are provided as well as maps. This study suggested a method for geometric correction of the panoramic aerial images in the internet portal and 3D building modeling using information which is available in the internet. The key of this study is to obtain all necessary data easily from internet without restrictions. Practically, the ground control coordinates could be available from geo-referenced internet maps, and stereo pairs of the aerial images and close-range photographs for photo-realistic object modeling are provided by the internet service. However, the ground control points are not suitable for accurate mapping. RMSE of the plotting was about 9 meters and reduced upto 4 meters after coordinate transformation. The proposed methods would be applicable to various applications of photo-realistic object modeling which do not require high accuracy.

Case Study: Record Management & Maintenance System Implementation with Architectural Drawings on GIS Platform (GIS 플렛폼을 활용한 건축도면 및 자료 유지관리시스템 적용 사례연구 - 미국 버지니아주 리치몬드시청 건축도면 및 자료 유지관리시스템 사례연구 -)

  • Chong, K. Chul;Sho, Kwang-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.163-172
    • /
    • 2020
  • This study is a case study for in-house developed Record Maintenance and Management (RMMS) which is a digital data storage/retrieval system in a GIS-enabled solution. RMMS is designed for reorganizing submitted architectural drawings associated with scanned drawings files & geodatabase, managing metadata/table and geometric features in ArcSDE/Enterprise geodatabase format. The birth of the RMMS was borne out of a necessity for a modernized approach in digital file basis to provide improved customer services for various architectural drawings and associated with geo-spatial and its attribute information. Through a case study for building permit & review practice implemented on an internet-based Electronic Architectural administration Information System (EAIS) at the local governments in Korea, this study is able to derive differences between GIS-enabled RMMS system implemented in the Richmond City and internet-based EAIS system implemented in the local government in Korea. In an effort to be the most effective, it presents meaningful ways of maximizing efficiency in record maintenance & management system derived from the case studies that looked into in ways of a method in RMMS' operation, implementation on GIS platform, mutual interface among various programs with various digital files and finally technical supports and system development /upgrade.

Grouping Method Based Query Range Density for Efficient Operation Sharing of Spatial Range Query (공간영역질의의 효율적인 연산 공유를 위한 질의영역 밀집도 기반의 그룹화 기법)

  • Lim, Jung-Hyeun;Shin, Soong-Sun;Baek, Sung-Ha;Lee, Dong-Wook;Kim, Kyung-Bae;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.348-351
    • /
    • 2009
  • 유비쿼터스 사회를 실현하는 핵심기술인 u-GIS 공간정보 기술은 데이터 스트림 처리 시스템(Data Stream Management System)과 지리정보 시스템(Geography Information System)이 결합된 플랫폼인 u-GIS DSMS를 요구한다. u-GIS DSMS는 GeoSeonsor에서 수집되는 센서 테이터와 GIS의 공간정보 데이터를 결합하여 처리하는 공간영역질의가 다수 요구된다. 이런 공간영역질의들은 특정 지역에 밀집하게 등록되는 경향이 있으며, 유사한 프리디킷을 가질 가능성이 높다. 이러한 특징은 공간영역질의가 특정 지역에 밀집되면 다수의 비슷한 연산들이 반복적으로 처리하기 때문에 시스템 성능이 저하 될 것이다. 이를 해결하기 위해 영역질의 색인기법 연구가 활발히 진행되고 있다. 그러나 기존의 VCR-Index와 CQI-Index 기법은 질의영역을 셀 구조나 가상구조로 분할하여 처리하기 때문에 자원 및 연산을 공유 할 수 없어 질의 처리 속도가 현저히 저하되기 때문에 대량의 공간영역질의 처리에는 부적합하다. 그래서 본 논문에서는 공간영역질의의 효율적인 연산 공유를 위한 질의영역 밀집도 기반의 그룹화 기법을 제안한다. 이 기법은 질의영역의 밀집도를 이용하여 공간영역질의들을 그룹화 후 색인을 구성한다. 색인된 영역들의 데이터는 단일 큐로 구성 후 질의들의 프리디킷을 분석하여 자원 및 연산 공유기법을 통해 기존의 기법보다 처리 속도 향상 및 메모리 사용을 감소시켰다.

A Study on Establishment of the Levee GIS Database Using LiDAR Data and WAMIS Information (LiDAR 자료와 WAMIS 정보를 활용한 제방 GIS 데이터베이스 구축에 관한 연구)

  • Choing, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.104-115
    • /
    • 2014
  • A levee is defined as an man-made structure protecting the areas from temporary flooding. This paper suggests a methodology for establishing the levee GIS database using the airborne topographic LiDAR(Light Detection and Ranging) data taken in the Nakdong river basins and the WAMIS(WAter Management Information System) information. First, the National Levee Database(NLD) established by the USACE(United States Army Corps Engineers) and the levee information tables established by the WAMIS are compared and analyzed. For extracting the levee information from the LiDAR data, the DSM(Digital Surface Model) is generated from the LiDAR point clouds by using the interpolation method. Then, the slope map is generated by calculating the maximum rates of elevation difference between each pixel of the DSM and its neighboring pixels. The slope classification method is employed to extract the levee component polygons such as the levee crown polygons and the levee slope polygons from the slope map. Then, the levee information database is established by integrating the attributes extracted from the identified levee crown and slope polygons with the information provided by the WAMIS. Finally, this paper discusses the advantages and limitations of the levee GIS database established by only using the LiDAR data and suggests a future work for improving the quality of the database.

Design and Implementation of GML Transformation System based on Standard Transportation Framework Model of TTA (TTA 표준 교통 프레임워크 데이터 모델 기반 GML 변환 시스템 설계 및 구현)

  • Lee, Ki-Won;Kim, Hak-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.25-35
    • /
    • 2006
  • Standardization or standard-related study are regarded as main issues in GIS applications. Though several GIS standards and specifications have been released, there are a few actual application cases adapting those. In this study, we designed and implemented a geo-spatial information processing system with editing, storing, and disseminating functions, in which standard GIS transportation data model by TTA linked with OGC-GML, XML-based geographic features encoding standard. The system developed in this study enables us to transfer and edit transportation entities based on TTA standards to GML, importing ESRI shapefile. In web-based system, GML-based databases are transformed to SVG file, for the purpose of web publishing. TTA GIS transportation data model is used in this study, and tested; however, standard data models from other application fields also can be easily applied because this system basically provides data importing and editing functions. This system as practical tools can be utilized for applicability test of GIS standard data model and practical operation of standard specification.

  • PDF

Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River (항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로)

  • Lee, Jae Bin;Kim, Hye Jin;Kim, Jae Hak;Wie, Gwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.235-243
    • /
    • 2021
  • River surveying is conducted to acquire basic geographic data for river master plans and various river maintenance, and it is also used to predict changes after river maintenance construction. ABL (Airborne Bathymetric LiDAR) system is a cutting-edge surveying technology that can simultaneously observe the water surface and river bed using a green laser, and has many advantages in river surveying. In order to use the ABL data for river surveying, it is prerequisite step to segment and extract the water surface and river bed points from the original point cloud data. In this study, point cloud segmentation was performed by applying the ground filtering technique, ATIN (Adaptive Triangular Irregular Network) to the ABL data and then, the water surface and riverbed point clouds were extracted sequentially. In the Gokgyocheon river area, Chungcheongnam-do, the experiment was conducted with the dataset obtained using the Leica Chiroptera 4X sensor. As a result of the study, the overall classification accuracy for the water surface and riverbed was 88.8%, and the Kappa coefficient was 0.825, confirming that the ABL data can be effectively used for river surveying.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine (GIS 및 확률모델을 이용한 폐탄광 지역의 지반침하 위험 예측)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Lee, Sa-Ro;Kim, Il-Soo;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.295-306
    • /
    • 2007
  • In this study, we predicted areas vulnerable to ground subsidence near abandoned underground coal mine at Sam-cheok City in Korea using a probability (frequency ratio) model with Geographic Information System (GIS). To extract the factors related to ground subsidence, a spatial database was constructed from a topographical map, geo-logical map, mining tunnel map, land characteristic map, and borehole data on the study area including subsidence sites surveyed in 2000. Eight major factors were extracted from the spatial analysis and the probability analysis of the surveyed ground subsidence sites. We have calculated the decision coefficient ($R^2$) to find out the relationship between eight factors and the occurrence of ground subsidence. The frequency ratio model was applied to deter-mine each factor's relative rating, then the ratings were overlaid for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with the surveyed ground subsidence sites. The results of verification showed high accuracy of 96.05% between the predicted hazard map and the actual ground subsidence sites. Therefore, the quantitative analysis of ground subsidence near abandoned underground coal mine would be possible with a frequency ratio model and a GIS.

Modification of IKONOS RPC Using Additional GCP (지상기준점 추가에 의한 IKONOS RPC 갱신)

  • Bang, Ki-In;Jeong, Soo;Kim, Kyung-Ok;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.41-50
    • /
    • 2002
  • RPM is the one of the sensor models which is proposed by Open GIS Consortium (OGC) as image transfer standard. And it is the sensor model for end-users using IKONOS, a commercial pushbroom satellite, imagery which provide about 1m ground resolution. Parameters called RPC which is IKONOS RFM coefficients are serviced to end-users. But if some users try to make additional effort to get rigorous geo-spatial information, it is necessary to apply mathematic or abstract sensor models, because vendors don't offer any ancillary data for physical sensor models such as satellite orbit and navigation. Abstract sensor models such as pushbroom Direct Linear Transform (DLT) require many GCPs well distributed in imagery, and mathematic sensor model such as RFM, polynomials need much more GCPs. Therefore RPC modification using additional a few GCPs is the best solution. In this paper, two methods are proposed to modify RPC. One is method to use pseudo GCPs generated in normalized cubic, and another method uses parameters observations and a few GCPs. Through two methods, we get improvement of accuracy 50% and over.

  • PDF

A Study on the World Geodetic System Transformation Using Triangle Mesh Warping (삼각형 와핑에 의한 세계측지계 좌표변환 방법 연구)

  • Jee, Gye Hwan;Lee, Hyun Jik;Kwon, Jay Hyoun;Sim, Gyoo Seong
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2014
  • The Triangle Mesh Warping method is suggested and applied in coordinate transformation to world geodetic system in this study. The common points of Uiwang city are used to compare the transformation accuracy of the suggested methods with existing national coordinate transformation methods. As a result, the Triangle Mesh Warping method was satisfied with accuracy criteria for positioning on a map larger than scale 1/1,000 with smaller number of common points and without distortion modeling. Additionally, in case of Guri and Pyeongtaek city that established the World Geodetic System, the suggested method generates the result of transformation accuracy better than 5cm. Based on the test, it was found that the suggested method improves the problem of securing many common points and reduces the problem of mis-match between the transformed data of adjacent areas. Accordingly, for transformation of large-scale topographic map, cadastral map, GIS DB and serial cadastral map to the World Geodetic System, it is judged that the Triangle Mesh Warping would be a good method for economical efficiency and accuracy using by minimum common point.