• Title/Summary/Keyword: Genomics Approach

Search Result 238, Processing Time 0.027 seconds

Detecting outliers in segmented genomes of flu virus using an alignment-free approach

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.2.1-2.11
    • /
    • 2020
  • In this paper, we propose a new approach to detecting outliers in a set of segmented genomes of the flu virus, a data set with a heterogeneous set of sequences. The approach has the following computational phases: feature extraction, which is a mapping into feature space, alignment-free distance measure to measure the distance between any two segmented genomes, and a mapping into distance space to analyze a quantum of distance values. The approach is implemented using supervised and unsupervised learning modes. The experiments show robustness in detecting outliers of the segmented genome of the flu virus.

Chemical Genomics with Natural Products

  • Jung, Hye-Jin;Ho, Jeong-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.651-660
    • /
    • 2006
  • Natural products are a rich source of biologically active small molecules and a fertile area for lead discovery of new drugs [10, 52]. For instance, 5% of the 1,031 new chemical entities approved as drugs by the US Food and Drug Administration (FDA) were natural products between 1981 and 2002, and another 23% were natural product-derived molecules [53]. These molecules have evolved through millions of years of natural selection to interact with biomolecules in the cells or organisms and offer unrivaled chemical and structural diversity [14, 37]. Nonetheless, a large percentage of nature remains unexplored, in particular, in the marine and microbial environments. Therefore, natural products are still major valuable sources of innovative therapeutic agents for human diseases. However, even when a natural product is found to exhibit biological activity, the cellular target and mode of action of the compound are mostly mysterious. This is also true of many natural products that are currently under clinical trials or have already been approved as clinical drugs [11]. The lack of information on a definitive cellular target for a biologically active natural product prevents the rational design and development of more potent therapeutics. Therefore, there is a great need for new techniques to expedite the rapid identification and validation of cellular targets for biologically active natural products. Chemical genomics is a new integrated research engine toward functional studies of genome and drug discovery [40, 69]. The identification and validation of cellular receptors of biologically active small molecules is one of the key goals of the discipline. This eventually facilitates subsequent rational drug design, and provides valuable information on the receptors in cellular processes. Indeed, several biologically crucial proteins have already been identified as targets for natural products using chemical genomics approach (Table 1). Herein, the representative case studies of chemical genomics using natural products derived from microbes, marine sources, and plants will be introduced.

New Approach to Predict microRNA Gene by using data Compression technique

  • Kim, Dae-Won;Yang, Joshua SungWoo;Kim, Pan-Jun;Chu, In-Sun;Jeong, Ha-Woong;Park, Hong-Seog
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.361-365
    • /
    • 2005
  • Over the past few years, the complex and subtle roles of microRNA (miRNA) in gene regulation have been increasingly appreciated. Computational approaches have played one of important roles in identifying miRNAs from plant and animals, as well as in predicting their putative gene target. We present a new approach of comprehensive analysis of the evolutionarily conserved element scores and applied data compression technique to detect putative miRNA genes. We used the evolutionarily conserved elements [19] (see more detail on method and material) to calculate for base-by-base along the candidate pre-miRNA gene region by detecting common conserved pattern from target sequence. We applied the data compression technique [20] to detect unknown miRNA genes. This zipping method devises, without loss of generality with respect to the nature of the character strings, a method to measure the similarity between the strings under consideration [20]. Our experience to using our new computational method for detecting miRNA gene identification (or miRNA gene prediction) has been stratified and we were able to find 28 putative miRNA genes.

  • PDF

Identification of Potential Target Genes Involved in Doxorubicin Overproduction Using Streptomyces DNA Microarray Systems

  • Kang, Seung-Hoon;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.82-85
    • /
    • 2005
  • Doxorubicin is a highly-valuable anthracycline-family polyketide drug with a very potent anticancer activity, typically produced by a Gram-positive soil bacterium called Streptomyces peucetius. Thanks to the recent development of Streptomyces genomics-based technologies, the random mutagenesis approach for Streptomyces strain improvement has been switched toward the genomics-based technologies including the application of DNA microarray systems. In order to identify and characterize the genomics-driven potential target genes critical for doxorubincin overproduction, three different types of doxorubicin overproducing strains, a dnrI(doxorubicin-specific positive regulatory gene)-overexpressor, a doxA (gene involved in the conversion from daunorubicin to doxorubicin)-overexpressor, and a recursively-mutated industrial strain, were generated and examined their genomic transcription profiles using Streptomyces DNA microarray systems. The DNA microarray results revealed several potential target genes in S. peucetius genome, whose expressions were significantly either up- or down-regulated comparing with the wild-type strain. A systematic understanding of doxorubicin overproduction at the genomic level presented in this research should lead us a rational design of molecular genetic strain improvement strategy.

  • PDF

An Optimized Strategy for Genome Assembly of Sanger/pyrosequencing Hybrid Data using Available Software

  • Jeong, Hae-Young;Kim, Ji-Hyun F.
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2008
  • During the last four years, the pyrosequencing-based 454 platform has rapidly displaced the traditional Sanger sequencing method due to its high throughput and cost effectiveness. Meanwhile, the Sanger sequencing methodology still provides the longest reads, and paired-end sequencing that is based on that chemistry offers an opportunity to ensure accurate assembly results. In this report, we describe an optimized approach for hybrid de novo genome assembly using pyrosequencing data and varying amounts of Sanger-type reads. 454 platform-derived contigs can be used as single non-breakable virtual reads or converted to simpler contigs that consist of editable, overlapping pseudoreads. These modified contigs maintain their integrity at the first jumpstarting assembly stage and are edited by fragmenting and rejoining. Pre-existing assembly software then can be applied for mixed assembly with 454-derived data and Sanger reads. An effective method for identifying genomic differences between reference and sample sequences in whole-genome resequencing procedures also is suggested.

Computer Models of Bacterial Cells To Integrate Genomic Detail with Cell Physiology

  • Shuler, Michael L.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.54-62
    • /
    • 2005
  • While genomics (the set of experimental and computational tools that allows the blueprints of life to be read) opens the doors to a more rational approach to the design and use of living cells to bring about desirable chemical transformations, genomics is, by itself, insufficient. We need tools that allow us to relate genomic and molecular information to cellular physiology and then to the response of a population of cells. We propose the development of hybrid computer cellular models. In such models genomics and chemical detail for a cellular subsystem (e.g. pathogenesis) is embedded in a coarse-grain cell model. Such a construct allows the quantitative and explicit linkage of genomic detail to cell physiology to the extracellular environment. To illustrate the principles involved we are constructing a model for a minimal cell. A minimal cell is a bacterial cell with the fewest number of genes necessary to sustain life as a free living microbe.

  • PDF

Recent Progress of Genome Study for Anaplastic Thyroid Cancer

  • Lee, Jieun;Hwang, Jung-Ah;Lee, Eun Kyung
    • Genomics & Informatics
    • /
    • v.11 no.2
    • /
    • pp.68-75
    • /
    • 2013
  • Anaplastic thyroid cancer (ATC) belongs to the most malignant and rapidly progressive human thyroid cancers and its prognosis is very poor. Also, it shows high resistance to cancer treatments, so that effective treatment for ATC has not been found to date, and virtually all patients terminate their life rapidly after diagnosis. Although targeted treatment of genetic alterations has emerged as an extremely promising approach to human cancers, such as BRAF in metastatic melanoma, it remains unclear that how commonly genomic alterations are influenced in ATC tumorigenesis. In recent years, genome wide approaches have been exploited to find genetic alterations associated with complex diseases, including cancer. Here, we reviewed the comprehensive genetic alterations in ATC and recent approaches in the context of identifying genomic alterations associated with ATC. Since surprisingly few reports have been published on the genome wide study of ATC, this review puts emphasis on the urgent needs of genomic research for the prevention and treatment of ATC.

Two Bacterial Entophytes Eliciting Both Plant Growth Promotion and Plant Defense on Pepper (Capsicum annuum L.)

  • Kang, Seung-Hoon;Cho, Hyun-Soo;Cheong, Hoon;Ryu Choong-Min;Kim, Ji-Hyun;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.96-103
    • /
    • 2007
  • Plant growth-promoting rhizobacteria (PGPR) have the potential to be used as microbial inoculants to reduce disease incidence and severity and to increase crop yield. Some of the PGPR have been reported to be able to enter plant tissues and establish endophytic populations. Here, we demonstrated an approach to screen bacterial endophytes that have the capacity to promote the growth of pepper seedlings and protect pepper plants against a bacterial pathogen. Initially, out of 150 bacterial isolates collected from healthy stems of peppers cultivated in the Chungcheong and Gyeongsang provinces of Korea, 23 putative endophytic isolates that were considered to be predominating and representative of each pepper sample were selected. By phenotypic characterization and partial 16S rDNA sequence analysis, the isolates were identified as species of Ochrobacterium, Pantoea, Pseudomonas, Sphingomonas, Janthinobacterium, Ralstonia, Arthrobacter, Clavibacter, Sporosarcina, Acidovorax, and Brevundimonas. Among them, two isolates, PS4 and PS27, were selected because they showed consistent colonizing capacity in pepper stems at the levels of $10^6-10^7CFU/g$ tissue, and were found to be most closely related to Pseudomonas rhodesiae and Pantoea ananatis, respectively, by additional analyses of their entire 16S rDNA sequences. Drenching application of the two strains on the pepper seedlings promoted significant growth of peppers, enhancing their root fresh weight by 73.9% and 41.5%, respectively. The two strains also elicited induced systemic resistance of plants against Xanthomonas axonopodis pv. vesicatoria.