• Title/Summary/Keyword: Genomics

Search Result 2,688, Processing Time 0.03 seconds

Beamline Automation of RIKEN Structural Genomics Beamlines

  • Ida, Koh;Yamamoto, Masaki;Kumasaka, Takashi;Ueno, Go;Kanda, Hiroyuki;Miyano, Masashi;Ishikawa, Tetsuya
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.463-465
    • /
    • 2002
  • RIKEN Structural Genomics Beamlines have been constructed for the crystallographic analysis in the structural genomics research at synchrotron radiation facility SPring-8. Synchrotron radiation accelerates the crystallographic analysis of protein structure. The target of the research and development is focused on the automatic beamline operation to maximize beamline efficiency. We are developing the sample management system, which is composed of the sample auto-changer and the database system, for high-throughput data collection. The sample management system and the beamline operating system make it possible to execute automatic data collection without any operators. The beamlines will be ready for user operation in autumn 2002. The concept of automatic beamline operation and the present status of RIKEN Structural Genomics Beamlines will be presented.

  • PDF

Construction of an RNase P Ribozyme Library System for Functional Genomics Applications

  • Hong, Sun-Woo;Choi, Hyo-Jei;Lee, Young-Hoon;Lee, Dong-Ki
    • Genomics & Informatics
    • /
    • v.5 no.1
    • /
    • pp.6-9
    • /
    • 2007
  • An RNase P ribozyme library has been developed as a tool for functional genomics studies. Each clone of this library contains a random 18-mer and the sequence of M1 RNA, the catalytic subunit of RNase P. Repression of target gene expression is thus achieved by the complementary binding of mRNA to the random guide sequence and the successive target cleavage via M1 RNA. Cellular expression of the ribozyme expression was confirmed, and EGFP mRNA was used as a model to demonstrate that the RNase P ribozyme expression system can inhibit the target gene expression. The constructed RNase P ribozyme library has a complexity of $1.4\times10^7$. This novel library system should become a useful in functional genomics, to identify novel gene functions in mammalian cells.