Fungal genome sequencing and assembly have been trivial in these days. Genome analysis relies on high quality of gene prediction and annotation. Automatic fungal genome annotation pipeline is essential for handling genomic sequence data accumulated exponentially. However, building an automatic annotation procedure for fungal genomes is not an easy task. FunGAP (Fungal Genome Annotation Pipeline) is developed for precise and accurate prediction of gene models from any fungal genome assembly. To make high-quality gene models, this pipeline employs multiple gene prediction programs encompassing ab initio, evidence-, and homology-based evaluation. FunGAP aims to evaluate all predicted genes by filtering gene models. To make a successful filtering guide for removal of false-positive genes, we used a scoring function that seeks for a consensus by estimating each gene model based on homology to the known proteins or domains. FunGAP is freely available for non-commercial users at the GitHub site (https://github.com/CompSynBioLab-KoreaUniv/FunGAP).
In conclusion, the seemingly fuzzy and disorganized data of biology with thousands of different layers ranging from molecule to the Internet have refused so far to be mapped precisely and predicted successfully by mathematicians, physicists or computer scientists. Genomics and bioinformatics are the fields that process such complex data. The insights on the nature of biological entities as complex interaction networks are opening a door toward a generalization of the representation of biological entities. The main challenge of genomics and bioinformatics now lies in 1) how to data mine the networks of the domains of bioinformatics, namely, the literature, metabolic pathways, and proteome and structures, in terms of interaction; and 2) how to generalize the networks in order to integrate the information into computable genomic data for computers regardless of the levels of layer. Once bioinformatists succeed to find a general principle on the way components interact each other to form any organic interaction network at genomic scale, true simulation and prediction of life in silico will be possible.
Hai Dang Sy;Kim Young-Pil;Choi Bum-Sun;Um Hyun-Ju;Kim Young-Chang
한국미생물학회:학술대회논문집
/
한국미생물학회 2002년도 추계학술대회
/
pp.175-179
/
2002
The assemblies of our partial genomic sequence data of Sphingomonas chungbukensis DJ77, with the total size of 877,928 bp, was done by TIGR Assembler. The total size of our current obtained contigs was about 0.73 Mb. A comparative genome analysis between our uncompleted genome and the other completed genomes was performed by taking advantage of the availability of multiple complete genomes in COGs database (Clusters of Orthologous Groups of proteins) to produce the genomic prediction of our S. chungbukensis DJ77. This analysis based on homologues search among completed genomes provides good initial step to our better assigning putative function to predicted coding sequences.
본 연구는 농협 한우개량사업소 후대검정우 552두의 도체중, 배최장근단면적, 등지방두께 및 근내지방도를 측정한 후 고밀도 SNP 패널(777K)을 사용하여 유전체 혈연 행렬(Genetic Relationship Matrix, GRM)을 추정하고 GBLUP (Genomic Best Linear Unbiased Prediction) 방법으로 GEBV (Genomic Estimated Breeding Value)를 구하여 교차 검증(Cross-validation) 방법으로 그 정확도를 추정함으로써 유전체 선발 기법을 한우 유전평가 체계에 적용하기 위한 기초자료로 이용하고자 수행하였다. 교차 검증 방법으로 각 형질별로 추정된 유전체 육종가의 정확도는 0.915~0.957로 상당히 높게 추정되었다. 대립유전자의 빈도로 계산된 유전체 혈연 행렬을 이용하여 GBLUP 방법으로 추정된 육종가 정확도의 최대 차이는 후대검정우 534두에 대하여 도체중, 배최장근단면적, 등지방 두께 및 근내지방도 순으로 각각 9.56%, 5.78%, 5.78% 및 4.18% 정도의 수준으로 상승했고, 혈통 기록상의 모든 개체 3,674두에 대해서는 형질 별로 최대 13.54%, 6.50%, 6.50% 및 4.31% 정도의 수준으로 증가한 결과가 추정되었다. 이는 한우 보증씨수소의 선발 시스템에서 아직 표현형 자료를 생산할 수 없는 당대검정 후보축 대한 집단을 조성할 때 유전체 정보를 이용한 사전 선발을 활용하면 기존의 상대적으로 낮았던 육종가의 정확도의 상승 효과와 세대 간격의 단축으로 인하여 유전적 개량량을 증대시킬 수 있을 것으로 기대된다. 본 연구에서 genomic breeding value 추정을 위하여 조성된 집단의 경우는 후대 검정우 집단으로서 개체들 간의 혈연관계가 높으며, 이미 전통적인 BLUP 방법으로도 상당히 높은 정확도를 가진 집단을 이용하였다. 그러나, 현재 한우 집단에 대한 유전체 자료 구축 시 이용할 수 있는 정확한 자료는 후대검정우 집단 외에는 참조 집단을 조성할 수 있는 대안이 없으므로, 지속적인 유전체 검정을 위해서는 다양한 유전적 조성이 구축된 참조 집단을 구축해야 할 것으로 사료된다. 또한 유전체 검정을 통한 정확도 상승효과를 기대하기 위해서 지속적으로 참조 집단의 크기를 늘릴 필요성이 있다.
Objective: To determine the effects of genomic breeding values (GBV) and single nucleotide polymorphisms (SNP) on the total number of piglets born (TNB) in 3 pig breeds (Berkshire, Landrace, and Yorkshire). Methods: After collecting genomic information (Porcine SNP BeadChip) and phenotypic TNB records for each breed, the effects of GBV and SNP were estimated by using single step best linear unbiased prediction (ssBLUP) method. Results: The heritability estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were 0.078, 0.107, and 0.121, respectively. The breeding value estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were in the range of -1.34 to 1.47 heads, -1.79 to 1.87 heads, and -2.60 to 2.94 heads, respectively. Of sows having records for TNB, the reliability of breeding value for individuals with SNP information was higher than that for individuals without SNP information. Distributions of the SNP effects on TNB did not follow gamma distribution. Most SNP effects were near zero. Only a few SNPs had large effects. The numbers of SNPs with absolute value of more than 4 standard deviations in Berkshire, Landrace, and Yorkshire breeds were 11, 8, and 19, respectively. There was no SNP with absolute value of more than 5 standard deviations in Berkshire or Landrace. However, in Yorkshire, four SNPs (ASGA 0089457, ASGA0103374, ALGA0111816, and ALGA0098882) had absolute values of more than 5 standard deviations. Conclusion: There was no common SNP with large effect among breeds. This might be due to the large genetic composition differences and the small size of reference population. For the precise evaluation of genetic performance of individuals using a genomic selection method, it may be necessary to establish the appropriate size of reference population.
Kwak, Min-Jung;Lee, Jidam;Kwon, Soon-Kyeong;Kim, Jihyun F.
Journal of Microbiology and Biotechnology
/
제27권3호
/
pp.591-597
/
2017
Maribacter dokdonensis DSW-8 was isolated from the seawater off Dokdo in Korea. To investigate the genomic features of this marine bacterium, we sequenced its genome and analyzed the genomic features. After de novo assembly and gene prediction, 16 contigs totaling 4,434,543 bp (35.95% G+C content) in size were generated and 3,835 protein-coding sequences, 36 transfer RNAs, and 6 ribosomal RNAs were detected. In the genome of DSW-8, genes encoding the proteins associated with gliding motility, molybdenum cofactor biosynthesis, and utilization of several kinds of carbohydrates were identified. To analyze the genomic relationships among Maribacter species, we compared publically available Maribacter genomes, including that of M. dokdonensis DSW-8. A phylogenomic tree based on 1,772 genes conserved among the eight Maribacter strains showed that Maribacter speices isolated from seawater are distinguishable from species originating from algal blooms. Comparison of the gene contents using COG and subsystem databases demonstrated that the relative abundance of genes involved in carbohydrate metabolism are higher in seawater-originating strains than those of algal blooms. These results indicate that the genomic information of Maribacter species reflects the characteristics of their habitats and provides useful information for carbon utilization of marine flavobacteria.
Tissue microarry is one of the high throughput technologies in the post-genomic era. Using tissue microarray, the researchers are able to investigate large amount of gene expressions at the level of DNA, RNA, and protein The important aspect of tissue microarry is its ability to assess a lot of biomarkers which have been used in clinical practice. To manipulate the categorical data of tissue microarray, we applied Bayesian network classifier algorithm. We identified that Bayesian network classifier algorithm could analyze tissue microarray data and integrating prior knowledge about gastric cancer could achieve better performance result. The results showed that relevant integration of prior knowledge promote the prediction accuracy of survival status of the immunohistochemical tissue microarray data of 18 tumor suppressor genes. In conclusion, the application of Bayesian network classifier seemed appropriate for the analysis of the tissue microarray data with clinical information.
The computational discovery of transcription factor binding site is one of the important tools in the genetic and genomic analysis. Rough prediction of gene regulation network and finding possible co-regulated genes are typical applications of the technique. Countless motif-discovery algorithms have been proposed for the past years. However, there is no dominant algorithm yet. Each algorithm does not give enough accuracy without extensive information. In this paper, we explore the possibility of combining multiple algorithms for the one integrated result in order to improve the performance and the convenience of researchers. Moreover, we apply new high order information that is reorganized from the set of basis predictions to the final prediction.
Fusobacterium nucleatum is a gram-negative bacteria associated with diverse infections like appendicitis and colorectal cancer. It mainly attacks the epithelial cells in the oral cavity and throat of the infected individual. It has a single circular genome of 2.7 Mb. Many proteins in F. nucleatum genome are listed as "Uncharacterized." Annotation of these proteins is crucial for obtaining new facts about the pathogen and deciphering the gene regulation, functions, and pathways along with discovery of novel target proteins. In the light of new genomic information, an armoury of bioinformatic tools were used for predicting the physicochemical parameters, domain and motif search, pattern search, and localization of the uncharacterized proteins. The programs such as receiver operating characteristics determine the efficacy of the databases that have been employed for prediction of different parameters at 83.6%. Functions were successfully assigned to 46 uncharacterized proteins which included enzymes, transporter proteins, membrane proteins, binding proteins, etc. Apart from the function prediction, the proteins were also subjected to string analysis to reveal the interacting partners. The annotated proteins were also put through homology-based structure prediction and modeling using Swiss PDB and Phyre2 servers. Two probable virulent factors were also identified which could be investigated further for potential drug-related studies. The assigning of functions to uncharacterized proteins has shown that some of these proteins are important for cell survival inside the host and can act as effective drug targets.
게놈 연구에서 수천 개의 특징들은 비교적 작은 샘플들로부터 모아진다. 게놈 연구의 목적은 미래 관찰들의 결과를 예측하는 분류기를 만드는 것이다. 분류기를 만들기 위해서는 특징 선택, 모델 선택 그리고 예측 평가 등의 3단계 과정을 거친다. 본 논문은 예측 평가에 초점을 맞추고 모든 슬라이드의 사분위수를 똑같게 맞추는 quantilenormalization 적용하여 마이크로어레이 데이터를 표준화 한 후 특징 선택에 앞서 예측 모델의 '진짜' 예측 에러를 평가하기 위해 몇 개의 방법들을 비교하는 시스템을 고안하고 방법들의 예측 에러를 비교 분석 하였다. LOOCV는 전체적으로 작은 MSE와 bias를 나타내었고, 크기가 작은 샘플에서 split 방법과 2-fold CV는 매우 좋지 않는 결과를 보였다. 계산적으로 번거로운 분석에 대해서는 10-fold CV가 LOOCV보다 오히려 더 낳은 경향을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.