• Title/Summary/Keyword: Genomic analysis

Search Result 1,628, Processing Time 0.037 seconds

Sequencing, Genomic Structure, Chromosomal Mapping and Association Study of the Porcine ADAMTS1 Gene with Litter Size

  • Yue, K.;Peng, J.;Zheng, R.;Li, J.L.;Chen, J.F.;Li, F.E.;Dai, L.H.;Ding, SH.H.;Guo, W.H.;Xu, N.Y.;Xiong, Y.ZH.;Jiang, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.917-922
    • /
    • 2008
  • A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif (ADAMTS1) plays a critical role in follicular rupture and represents a major advance in the proteolytic events that control ovulation. In this study, a 9,026-bp DNA sequence containing the full coding region, all 8 introns and part of the 5'and 3' untranslated region of the porcine ADAMTS1 gene was obtained. Analysis of the ADAMTS1 gene using the porcine radiation hybrid panel indicated that pig ADAMTS1 is closely linkage with microsatellite marker S0215, located on SSC13q49. The open reading frame of its cDNA covered 2,844 bp and encoded 947 amino acids. The coding region of porcine ADAMTS1 as determined by sequence alignments shared 85% and 81% identity with human and mouse cDNAs, respectively. The deduced protein contained 947 amino acids showing 85% sequence similarity both to the human and mouse proteins, respectively. Comparative sequencing of three pig breeds revealed one single nucleotide polymorphism (SNP) within exon 7 of which a G-C substitution at position 6006 changes a codon for arginine into a codon for proline. The substitution was situated within a PvuII recognition site and developed as a PCR-RFLP marker for further use in population variation investigations and association analysis with litter size. Allele frequencies of this SNP were investigated in seven pig breeds/lines. An association analysis in a new Qingping female line suggested that different ADAMTS1 genotypes have significant differences in litter size (p<0.01).

Target Identification for Metabolic Engineering: Incorporation of Metabolome and Transcriptome Strategies to Better Understand Metabolic Fluxes

  • Lindley, Nic
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.60-61
    • /
    • 2004
  • Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted

  • PDF

Effect of Genetic Correlations on the P Values from Randomization Test and Detection of Significant Gene Groups (유전자 연관성이 랜덤검정 P값과 유의 유전자군의 탐색에 미치는 영향)

  • Yi, Mi-Sung;Song, Hae-Hiang
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.781-792
    • /
    • 2009
  • At an early stage of genomic investigations, a small sample of microarrays is used in gene expression experiments to identify small subsets of candidate genes for a further accurate investigation. Unlike the statistical analysis methods for a large sample of microarrays, an appropriate statistical method for identifying small subsets is a randomization test that provides exact P values. These exact P values from a randomization test for a small sample of microarrays are discrete. The possible existence of differentially expressed genes in the sample of a full set of genes can be tested for the null hypothesis of a uniform distribution. Subsets of smaller P values are of prime interest for a further accurate investigation and identifying these outlier cells from a multinomial distribution of P values is possible by M test of Fuchs et al. (1980). Above all, the genome-wide gene expressions in microarrays are correlated, but the majority of statistical analysis methods in the microarray analysis are based on an independence assumption of genes and ignore the possibly correlated expression levels. We investigated with simulation studies the effect that correlated gene expression levels could have on the randomization test results and M test results, and found that the effects are often not ignorable.

Analysis of Genetic Relationship of Entomogenous Fungi in Korea by Morphological Characteristics and RAPD (한국에서 채집한 Entomogenous fungi의 형태와 RAPD에 의한 유연관계 분석)

  • Choi, In-Young;Choi, Joung-Sik;Yu, Young-Jin;Lee, Wang-Hyu
    • The Korean Journal of Mycology
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2001
  • RAPD test and the observation of morphological, cultural characteristics of fourteen selected entomogenous fungi were conducted to investigate the analysis of their internal relationships. Paecilomyces tenuipes showed snow flower form attached to numerous white conidiophores, produced globular and semi-egg types on the club types of phialides. Cordyceps militaris formed globosely conidiophores, dark yellow fruiting body on pupa. The phialide as on Acremonium-type in global conidiophores. Beauveria bassiana covered with conidia was not formed fruiting body and adhered conidia on conidiophore of zigzag type. The PDA and SDAY medium were confirmed as an optimum growth of them. P. tenuipes showed to velvet and plane types in several media whereas C. militaris was belong to centrally raised and floccose in the morphological type. In contrast, B. bassiana covered with conidia on velvet shape. The size of amplified products were analyzed by RAPD using URP primer and were from 100 bp to 2.0 kb with $10{\sim}14$ geuomic DNA. Total similarities of two groups were by dendrogram of UPGMA analysis. The homology of P. tenuipes groups was 94.8 to 100%. It also showed 70.1 to 96.6% in C. militaris group and B. bassiana was higher similarity than any other. The internal change of C. militaris, produced telemorph fruiting body, was higher seperated in species than P. tenuipes and B. bassiana in the RAPD.

  • PDF

Diversity Analysis of Japonica Rice using MITE-transposon Display (MITE-AFLP를 이용한 자포니카 벼의 다양성 검정)

  • Hong Seong-Mi;Kwon Soo-Jin;Oh Chang-Sik;Wessler Susan R.;Ahn Sang-Nag
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.259-268
    • /
    • 2006
  • Miniature inverted transposable elements (MITEs) are abundant genomic components in plant including rice. MITE-transposon display (MITE-TD) is an Amplified Fragment Length Polymorphism (AFLP)-related technique based on MITE sequence. In this study, we used the MITE-AFLP for the analysis of diversity and relation-ship of the 114 japonica accessions. Of the several MITEs, the mPing family was applied to detect polymorphisms based on PCR amplification. The BfaI adaptor primer and the specific primer derived from mPing terminal inverted repeat (TIR) region were used to PCR amplification of 114 accessions. Nine primer pairs produced a total of 160 polymorphic bands. PIC values of the polymorphic bands generated by nine primer pairs ranged from 0.269 (BfaI + ACT) to 0.426 (BfaI + T). Each accession revealed a distinct fingerprint with two primer combinations, BfaI + G and BfaI + C. Cluster analysis using marker-based genetic similarity classified 114 accessions into five groups. MITE-AFLP markers were genetically mapped using a population of 80 BILs (BC1F7) derived from a cross between the rice accessions, Milyang 23 and Hapcheonaengmi 3. Eight of the markers produced with the primer pair BfaI + 0 were mapped on chromosomes 1, 2, 4, 5, 7, and 9. Considering that one MITE-AFLP marker on chromosome 7 was tightly linked to the Rc gene, the MITE-AFLP markers will be useful for gene tagging and molecular cloning.

Workflow for Building a Draft Genome Assembly using Public-domain Tools: Toxocara canis as a Case Study (개 회충 게놈 응용 사례에서 공개용 분석 툴을 사용한 드래프트 게놈 어셈블리 생성)

  • Won, JungIm;Kong, JinHwa;Huh, Sun;Yoon, JeeHee
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.9
    • /
    • pp.513-518
    • /
    • 2014
  • It has become possible for small scale laboratories to interpret large scale genomic DNA, thanks to the reduction of the sequencing cost by the development of next generation sequencing (NGS). De novo assembly is a method which creates a putative original sequence by reconstructing reads without using a reference sequence. There have been various study results on de novo assembly, however, it is still difficult to get the desired results even by using the same assembly procedures and the analysis tools which were suggested in the studies reported. This is mainly because there are no specific guidelines for the assembly procedures or know-hows for the use of such analysis tools. In this study, to resolve these problems, we introduce steps to finding whole genome of an unknown DNA via NGS technology and de novo assembly, while providing the pros and cons of the various analysis tools used in each step. We used 350Mbp of Toxocara canis DNA as an application case for the detailed explanations of each stated step. We also extend our works for prediction of protein-coding genes and their functions from the draft genome sequence by comparing its homology with reference sequences of other nematodes.

Full-Length Enriched cDNA Library Construction from Tissues Related to Energy Metabolism in Pigs

  • Lee, Kyung-Tai;Byun, Mi-Jeong;Lim, Dajeong;Kang, Kyung-Soo;Kim, Nam-Soon;Oh, Jung-Hwa;Chung, Chung-Soo;Park, Hae-Suk;Shin, Younhee;Kim, Tae-Hun
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.529-536
    • /
    • 2009
  • Genome sequencing of the pig is being accelerated because of its importance as an evolutionary and biomedical model animal as well as a major livestock animal. However, information on expressed porcine genes is insufficient to allow annotation and use of the genomic information. A series of expressed sequence tags of 5' ends of five full-length enriched cDNA libraries (SUSFLECKs) were functionally characterized. SUSFLECKs were constructed from porcine abdominal fat, induced fat cells, loin muscle, liver, and pituitary gland, and were composed of non-normalized and normalized libraries. A total of 55,658 ESTs that were sequenced once from the 5′ ends of clones were produced and assembled into 17,684 unique sequences with 7,736 contigs and 9,948 singletons. In Gene Ontology analysis, two significant biological process leaf nodes were found: gluconeogenesis and translation elongation. In functional domain analysis based on the Pfam database, the beta transducin repeat domain of WD40 protein was the most frequently occurring domain. Twelve genes, including SLC25A6, EEF1G, EEF1A1, COX1, ACTA1, SLA, and ANXA2, were significantly more abundant in fat tissues than in loin muscle, liver, and pituitary gland in the SUSFLECKs. These characteristics of SUSFLECKs determined by EST analysis can provide important insight to discover the functional pathways in gene networks and to expand our understanding of energy metabolism in the pig.

Comparative Genomic Analysis of Staphylococcus aureus FORC_001 and S. aureus MRSA252 Reveals the Characteristics of Antibiotic Resistance and Virulence Factors for Human Infection

  • Lim, Sooyeon;Lee, Dong-Hoon;Kwak, Woori;Shin, Hakdong;Ku, Hye-Jin;Lee, Jong-eun;Lee, Gun Eui;Kim, Heebal;Choi, Sang-Ho;Ryu, Sangryeol;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.98-108
    • /
    • 2015
  • Staphylococcus aureus is an important foodborne pathogen that causes diverse diseases ranging from minor infections to life-threatening conditions in humans and animals. To further understand its pathogenesis, the genome of the strain S. aureus FORC_001 was isolated from a contaminated food. Its genome consists of 2,886,017 bp double-stranded DNA with a GC content of 32.8%. It is predicted to contain 2,728 open reading frames, 57 tRNAs, and 6 rRNA operons, including 1 additional 5S rRNA gene. Comparative phylogenetic tree analysis of 40 complete S. aureus genome sequences using average nucleotide identity (ANI) revealed that strain FORC_001 belonged to Group I. The closest phylogenetic match was S. aureus MRSA252, according to a whole-genome ANI (99.87%), suggesting that they might share a common ancestor. Comparative genome analysis of FORC_001 and MRSA252 revealed two non-homologous regions: Regions I and II. The presence of various antibiotic resistance genes, including the SCCmec cluster in Region I of MRSA252, suggests that this strain might have acquired the SCCmec cluster to adapt to specific environments containing methicillin. Region II of both genomes contains prophage regions but their DNA sequence identity is very low, suggesting that the prophages might differ. This is the first report of the complete genome sequence of S. aureus isolated from a real foodborne outbreak in South Korea. This report would be helpful to extend our understanding about the genome, general characteristics, and virulence factors of S. aureus for further studies of pathogenesis, rapid detection, and epidemiological investigation in foodborne outbreak.

Genome-wide Methylation Analysis and Validation of Cancer Specific Biomarker of Head and Neck Cancer (전장유전체수준 메틸레이션 분석을 통한 두경부암 특이 메틸레이션 바이오마커의 발굴)

  • Chang, Jae Won;Park, Ki Wan;Hong, So-Hye;Jung, Seung-Nam;Liu, Lihua;Kim, Jin Man;Oh, Taejeong;Koo, Bon Seok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Methylation of CpG islands in the promoter region of genes acts as a significant mechanism of epigenetic gene silencing in head and neck squamous cell carcinoma (HNSCC). DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable mark. In the present study, we assessed the genome-wide preliminary screening and were to identify novel methylation biomarker candidate in HNSCC. Genome-wide methylation analysis was performed on 10 HNSCC tumors using the Methylated DNA Isolation Assay (MeDIA) CpG island microarray. Validation was done using immunohistochemistry using tissue microarray of 135 independent HNSCC tumors. In addition, in vitro proliferation, migration/invasion assays, RT-PCR and immunoblotting were performed to elucidate molecular regulating mechanisms. Our preliminary validation using CpG microarray data set, immunohisto-chemistry for HNSCC tumor tissues and in vitro functional assays revealed that methylation of the Homeobox B5 (HOXB5) and H6 Family Homeobox 2 (HMX2) could be possible novel methylation biomarkers in HNSCC.

Multiplex Simple Sequence Repeat (SSR) Markers Discriminating Pleurotus eryngii Cultivar (큰느타리(Pleurotus eryngii) 품종 판별을 위한 초위성체 유래 다중 표지 개발)

  • Im, Chak Han;Kim, Kyung-Hee;Je, Hee Jeong;Ali, Asjad;Kim, Min-Keun;Joung, Wan-Kyu;Lee, Sang Dae;Shin, HyunYeol;Ryu, Jae-San
    • The Korean Journal of Mycology
    • /
    • v.42 no.2
    • /
    • pp.159-164
    • /
    • 2014
  • For development of a method for differentiation of Pleurotus eryngii cultivars, simple sequence repeats (SSR) from whole genomic DNA sequence analysis was used for genotyping and two multiplex-SSR primer sets were developed. These SSR primer sets were employed to distinguish 12 cultivars and strains. Five polymorphic markers were selected based on the genotyping results. PCR using each primer produced one to four distinct bands ranging in size from 200 to 300 bp. Polymorphism information content (PIC) values of the five markers were in the range of 0.6627 to 0.6848 with an average of 0.6775. Unweighted pairgroup method with arithmetic mean clustering analysis based on genetic distances using five SSR markers classified 12 cultivars into two clusters. Cluster I and II were comprised of four and eight cultivars, respectively. Two multiplex sets, Multi-1 (SSR312 and SSR366) and Multi-2 (SSR178 and SSR277) completely discriminated 12 cultivars and strains with 21 alleles and a PIC value of 0.9090. These results might be useful in providing an efficient method for the identification of P. eryngii cultivars with separate PCR reactions.