• Title/Summary/Keyword: Genomic analysis

Search Result 1,628, Processing Time 0.024 seconds

Genetic Polymorphism of Marsh Clam (Corbicula leana) Identified by RAPD- PCR

  • Yoon Jong-Man;Park Kwan-Ha;Choe Sun-Nam
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.1
    • /
    • pp.13-19
    • /
    • 2003
  • Genomic DNA from the muscle of marsh clam (Corbicula leana) from Gochang, Muan and a Chinese site was extracted to identify genetic differences and similarity by randomly amplified polymorphic DNAs-polymerase chain reaction (RAPD- PCR). Out of 20 primers, seven primers produced amplified fragments which were consistently polymorphic. A total of 1,246 amplified products were produced of which 530 were polymorphic $(42.5\%)$. The number of polymorphic bands produced per primer varied from 40 to 122 with an average of 75.7 in marsh clam from Gochang. 3.28 of the 23.0 polymorphic bands per lane were found to be polymorphic. Also, about $4.34\%$ of total polymorphic bands were specific to marsh clam from Gochang. The major common bands of 0.28 kb generated by primer OPB-15 (GGAGGGTGTT) were present in every individuals, which were polymorphic. This common bands in every individuals should be diagnostic of specific strains, species and/or their relatedness. Primer OPB-19 (ACCCCCGAAG) produced the highest number of 12 specific bands. The intra-population variation was revealed in the band patterns identified by this primer. The random primer OPB-12 (CCTTGACGCA) yielded the amplified fragments which were consistently polymorphic between the marsh clams from Gochang and from Muan. This primer produced a total of 77 polymorphic bands: 31 bands from Gochang, 14 from Muan and 32 from the Chinese populations. An average of polymorphic bands were 1.8 from Gochang and 2.5 from the Chinese populations. This value obtained from the Chinese population was higher than those from the two domestic populations. Generally, the RAPD polymorphism generated by these primers may be useful as a genetic marker for strain or population identification of marsh clam.

Cloning, Expression, and Characterization of a Cold-Adapted Lipase Gene from an Antarctic Deep-Sea Psychrotrophic Bacterium, Psychrobacter sp. 7195

  • Zhang, Jinwei;Lin, Shu;Zeng, Runying
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.604-610
    • /
    • 2007
  • A psychrotrophic strain 7195 showing extracellular lipolytic activity towards tributyrin was isolated from deep-sea sediment of Prydz Bay and identified as a Psychrobacter species. By screening a genomic DNA library of Psychrobacter sp. 7195, an open reading frame of 954 bp coding for a lipase gene, lipA1, was identified, cloned, and sequenced. The deduced LipA1 consisted of 317 amino acids with a molecular mass of 35,210 kDa. It had one consensus motif, G-N-S-M-G (GXSXG), containing the putative active-site serine, which was conserved in other cold-adapted lipolytic enzymes. The recombinant LipA1 was purified by column chromatography with DEAE Sepharose CL-4B, and Sephadex G-75, and preparative polyacrylamide gel electrophoresis, in sequence. The purified enzyme showed highest activity at $30^{\circ}C$, and was unstable at temperatures higher than $30^{\circ}C$, indicating that it was a typical cold-adapted enzyme. The optimal pH for activity was 9.0, and the enzyme was stable between pH 7.0-10.0 after 24h incubation at $4^{\circ}C$. The addition of $Ca^{2+}\;and\;Mg^{2+}$ enhanced the enzyme activity of LipA1, whereas the $Cd^{2+},\;Zn^{2+},\;CO^{2+},\;Fe^{3+},\;Hg^{2+},\;Fe^{2+},\;Rb^{2+}$, and EDTA strongly inhibited the activity. The LipA1 was activated by various detergents, such as Triton X-100, Tween 80, Tween 40, Span 60, Span 40, CHAPS, and SDS, and showed better resistance towards them. Substrate specificity analysis showed that there was a preference for trimyristin and p-nitrophenyl myristate $(C_{14}\;acyl\; groups)$.

Structural Investigation and Homology Modeling Studies of Native and Truncated Forms of $\alpha$-Amylases from Sclerotinia sclerotiorum

  • Ben Abdelmalek, Imen;Urdaci, Maria Camino;Ali, Mamdouh Ben;Denayrolles, Muriel;Chaignepain, Stephane;Limam, Ferid;Bejar, Samir;Marzouki, Mohamed Nejib
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1306-1318
    • /
    • 2009
  • The filamentous ascomycete Sclerotinia sclerotiorum is well known for its ability to produce a large variety of hydrolytic enzymes. Two $\alpha$-amylases ScAmy54 and ScAmy43 predicted to play an important role in starch degradation were showed to produce specific oligosaccharides essentially maltotriose that have a considerable commercial interest. Primary structure of the two enzymes was established by N-terminal sequencing, MALDI-TOF masse spectrometry and cDNA cloning. The two proteins have the same N-terminal catalytic domain and ScAmy43 derived from ScAmy54 by truncation of 96 amino acids at the carboxyl-terminal region. Data of genomic analysis suggested that the two enzymes originated from the same $\alpha$-amylase gene and that truncation of ScAmy54 to ScAmy43 occurred probably during S. sclerotiorum cultivation. The structural gene of Scamy54 consisted of 9 exons and 8 introns, containing a single 1,500-bp open reading frame encoding 499 amino acids including a signal peptide of 21 residues. ScAmy54 exhibited high amino acid homology with other liquefying fungal $\alpha$-amylases essentially in the four conserved regions and in the putative catalytic triad. A 3D structure model of ScAmy54 and ScAmy43 was built using the 3-D structure of 2guy from A. niger as template. ScAmy54 is composed by three domains A, B, and C, including the well-known $(\beta/\alpha)_8$ barrel motif in domain A, have a typical structure of $\alpha$-amylase family, whereas ScAmy43 contained only tow domains A and B is the first fungal $\alpha$-amylase described until now with the smallest catalytic domain.

Identification and Analysis of Putative Polyhydroxyalkanoate Synthase (PhaC) in Pseudomonas fluorescens

  • Lim, Ju Hyoung;Rhie, Ho-Gun;Kim, Jeong Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1133-1140
    • /
    • 2018
  • Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. The PHA granules consisted mainly of a poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment that hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas. In vivo expression of the putative PHA synthase gene ($phaC_{Pf}$) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli (${phaC_{Pf}}^+$, pUMS) grown in medium containing glucose accumulated PHA granules consisting mainly of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from an E. coli fadR mutant (${phaC_{Pf}}^+$) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified $PhaC_{Pf}$, suggesting that the putative PHA synthase of P. fluorescens utilizes mainly short-chain-length PHA precursors as a substrate.

Molecular Cloning, Transcriptome Profiling, and Characterization of Histone Genes in the Dinoflagellate Alexandrium pacificum

  • Riaz, Sadaf;Sui, Zhenghong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1185-1198
    • /
    • 2018
  • The nucleosomal organization of chromatin using histone proteins is a fundamental and ubiquitous feature of eukaryotic nuclei, with the major exception of dinoflagellates. Although a number of recent genomic and transcriptomic analyses have detected numerous histone genes in dinoflagellates, little is known about their expression. Here in, we aimed to investigate the expression pattern of histone genes under nutritional stress, and an attempt was made to detect histone expression at the protein level in Alexandrium pacificum. The presence of histones at the mRNA level was confirmed in this study by the amplification, cloning, and sequencing of 10 different genes. Relative expression profiling of these genes under different growth conditions was determined with real-time PCR and revealed considerable levels of histone transcription in nutritionally stressed cells. We were unable to detect the expression of histones at the protein level even after immunodetection and analysis using mass spectrometry, although a histone-like protein was detected as a major nuclear component. A. pacificum expresses multiple variants of histone, and protein sequences revealed both conservation and divergence with respect to other eukaryotes. We concluded that A. pacificum maintained an active transcription of histone genes within the cell, and enhanced expression of histone genes in nutritional stress strongly suggest that histones have functional significance in dinoflagellates, although expression at the protein level was below our current detection limits, which suggests a limited role of histones in DNA packaging. Finally, the plausible regulation of histone expression at the gene and protein levels in A. pacificum is discussed.

Complete Genome of Bacillus subtilis subsp. subtilis KCTC 3135T and Variation in Cell Wall Genes of B. subtilis Strains

  • Ahn, Seonjoo;Jun, Sangmi;Ro, Hyun-Joo;Kim, Ju Han;Kim, Seil
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1760-1768
    • /
    • 2018
  • The type strain Bacillus subtilis subsp. subtilis KCTC $3135^T$ was deeply sequenced and annotated, replacing a previous draft genome in this study. The tar and tag genes were involved in synthesizing wall teichoic acids (WTAs), and these genes and their products were previously regarded as the distinguishing difference between B. s. subtilis and B. s. spizizenii. However, a comparative genomic analysis of B. subtilis spp. revealed that both B. s. subtilis and B. s. spizizenii had various types of cell walls. These tar and tag operons were mutually exclusive and the tar genes from B. s. spizizenii were very similar to the genes from non-Bacillus bacteria, unlike the tag genes from B. s. subtilis. The results and previous studies suggest that the tar genes and the tag genes are not inherited after subspecies speciation. The phylogenetic tree based on whole genome sequences showed that each subspecies clearly formed a monophyletic group, while the tree based on tar genes showed that monophyletic groups were formed according to the cell wall type rather than the subspecies. These findings indicate that the tar genes and the presence of ribitol as a cell-wall constituent were not the distinguishing difference between the subspecies of B. subtilis and that the description of subspecies B. s. spizizenii should be updated.

Analysis of DNA Methyltransferases (Dnmts) Expression during Early Development

  • Ko, Yeoung-Gyu;Kim, Jong-Mu;Im, Gi-Sun;Yang, Byoung-Chul;Lee, Hwi-Cheul;Seong, Hwan-Hoo;Yang, Boh-Suk;Chung, Hak-Jae
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.255-261
    • /
    • 2006
  • There are replete numbers of reports which have apparently shown that established patterns of methylation are critical for normal mammalian development. Here, we report expression of the DNA methyltransferases (Dnmts) family during mouse early development. Transcription of Dnmt1o occurs in one-cell and morula stage embryos, whereas Dnmtls transcripts were detectable in all cells and tissues examined during the study. Dnmt3a1 transcript was detected in all cells and Dnmt3a2 transcript was particularly detected in the oocyte and 1-cell stages. Low level Dnmt3b1 transcripts were expressed ubiquitously in oocyte, 1-cell, and preimplantation embryos except $2{\sim}4cell$ stages. Dnmt3b3 transcripts were only detected in E7.5 embryo and ovary. Furthermore, Dnmt31 transcripts were detectable in all cells and tissues examined. Unlike Dnmtl, both Dnmt3a and Dnmt3b proteins existed in the nucleus of preimplantation embryos till the morula stage. These Results suggest that differences Dnmts expression level exist and genomic DNA methylation patterns may be determined partly through differential expression of Dnmts during early development.

Identification of Polymorphisms of Fas Gene and Association Analysis in Hanwoo

  • Kim, Seung-Chang;Lee, Seung-Hwan;Kim, Bum-Soo;Kim, Tae-Hun;Seong, Hwan-Hoo;Oh, Sung-Jong;Yoon, Du-Hak;Choi, Bong-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.511-516
    • /
    • 2011
  • Fas gene known to associate with intramuscular fat content in Korean cattle was selected for DNA marker development. Fas (APO-1, CD95), a member of the tumor necrosis factor (TNF) receptor superfamily, is a cell membrane protein that mediates apoptosis (programmed cell death). We discovered single nucleotide polymorphisms (SNPs) within Fas gene in order to develop novel DNA markers at genomic level. Of this gene to search for SNP, sequences of whole exon and 1kb range of both front and back of the gene using 24 cattle were determined by direct-sequencing methods. As a result, 16 SNPs in exon, 37 SNPs in intron and 2 SNPs in promoter region, a total of 55 SNPs were discovered. In these SNPs, thirty-one common polymorphic sites were selected considering their allele frequencies, haplotype-tagging status and Linkage Disequilibrium (LD) for genotyping in larger-scale subjects. Selected SNPs were confirmed genotype through SNaPshot method (n=274) and were examined for possible genetic association of Fas polymorphisms with carcass weight (CWT), eye muscle area (EMA), and backfat thickness (BF). So, the SNP have been identified significant g.-12T>G, g.1112T>G and g.32548T>C. These results suggest that polymorphism of Fas gene was associated with meat quality traits in Hanwoo.

Whole-transcriptome analyses of the Sapsaree, a Korean natural monument, before and after exercise-induced stress

  • Kim, Ji-Eun;Choe, Junkyung;Lee, Jeong Hee;Kim, Woong Bom;Cho, Whan;Ha, Ji Hong;Kwon, Ki Jin;Han, Kook Il;Jo, Sung-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.58 no.4
    • /
    • pp.17.1-17.7
    • /
    • 2016
  • Background: The Sapsaree (Canis familiaris) is a Korean native dog that is very friendly, protective, and loyal to its owner, and is registered as a natural monument in Korea (number: 368). To investigate large-scale gene expression profiles and identify the genes related to exercise-induced stress in the Sapsaree, we performed whole-transcriptome RNA sequencing and analyzed gene expression patterns before and after exercise performance. Results: We identified 525 differentially expressed genes in ten dogs before and after exercise. Gene Ontology classification and KEGG pathway analysis revealed that the genes were mainly involved in metabolic processes, such as programmed cell death, protein metabolic process, phosphatidylinositol signaling system, and cation binding in cytoplasm. The ten Sapsarees could be divided into two groups based on the gene expression patterns before and after exercise. The two groups were significantly different in terms of their basic body type ($p{\leq}0.05$). Seven representative genes with significantly different expression patterns before and after exercise between the two groups were chosen and characterized. Conclusions: Body type had a significant effect on the patterns of differential gene expression induced by exercise. Whole-transcriptome sequencing is a useful method for investigating the biological characteristics of the Sapsaree and the large-scale genomic differences of canines in general.

Confirmation of genotypic effects for the bovine APM1 gene on marbling in Hanwoo cattle

  • Kwon, Anam;Srikanth, Krishnamoorthy;Lee, Eunjin;Kim, Seonkwan;Chung, Hoyoung
    • Journal of Animal Science and Technology
    • /
    • v.58 no.4
    • /
    • pp.15.1-15.6
    • /
    • 2016
  • Background: Our previous study had identified the SNP (g.81966377T > C) and indel (g.81966364D > I) located in the promoter of APM1 to have a significant effect on marbling in Hanwoo. APM1 encodes an adipocytokine called adiponectin, which plays a significant role in lipogenesis. The aim of this study was to verify and validate the effect of the SNP and indel on marbling and other carcass traits in a large, representative, countrywide population of Hanwoo cattle. The carcass traits measured were marbling (MAR), backfat thickness (BFT), loin eye area (LEA), and carcass weight (CAW). Results: Primers were designed to amplify 346 bp of the genomic segment that contained the targeted SNP (g.81966377) and the indel (g.81966364). After data curation, the genotypes of 8,378 individuals identified using direct sequencing analysis estimated frequencies for C (0.686) and T (0.314) respectively showing genotype frequencies for CC (0.470), CT (0.430) and TT (0.098). The genotypes were significantly associated with MAR, BFT and LEA. The indel had significant effect on marbling (P < .0001) with strong additive genetic effects. The allele frequencies was estimated at (DEL, 0.864) and insertion (INS, 0.136) presenting genotypes of D/D (75.63 %), D/I (21.44 %), and I/I (2.92 %). Significant departure from Hardy-Weinberg equilibrium was not detected for both the SNP and the indel. Conclusion: The SNP genotypes showed significant association with MAR, BFT and LEA with strong additive genetic effects, while the indel was significantly associated with MAR. The results confirmed that the variants can be used as a genetic marker for improving marbling in Hanwoo.