• Title/Summary/Keyword: Genomic Sequence

Search Result 904, Processing Time 0.027 seconds

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Cancer Cells

  • Yi, Joo-Mi;Kim, Hwan-Mook;Kim, Heui-Soo
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.167-170
    • /
    • 2002
  • The long terminal repeats (LTRs) of human endogenous retrovirus (HERV) have been found to be coexpressed with sequences of closely located genes. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases and evolution. We examined the HERV-W LTR elements in various cancer cells (2F7, A43l , A549, HepG2, MIA-PaCa-2, PC-3, RT4, SiHa, U-937, and UO-31). Using genomic DNA from the cancer cells, we performed PCR amplification and identified twelve new HERV-W LTR elements. Those LTR elements showed a high degree of sequence similarity (88-99%) with HERV-W LTR (AF072500). A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-W LTR elements could be mainly divided into two groups through evolutionary divergence. Three HERV-W LTR elements (RT4-2, A43l-1, and UO3l-2) belonged to Group 1, whereas nine LTR elements (2F7-2, A549-1, A549-3, HepG2-3, MP2-2, PC3-1, SiHa-8, SiHa-10, and U937-1) belonged to Group 11. Taken together, our new sequence data of the HERV-W LTR elements may contribute to an understanding of tissue-specific cancer by genomic instability of LTR integration.

Genome sequence of Caballeronia sordidicola strain PAMC 26592 isolated from an arctic lichen species (북극 지의류에서 분리한 Caballeronia sordidicola균주 PAMC 26592의 유전체 서열 분석)

  • Kim, Junghee;Kwon, Kae Kyoung;Kim, Byung Kwon;Hong, Soon Gyu;Oh, Hyun-Myung
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.64-66
    • /
    • 2017
  • Caballeronia sordidicola strain PAMC 26592 was isolated from Umbilicaria sp., a lichen material collected from Svalbard Archipelago in the Arctic Ocean. We report the draft genome sequence of the strain PAMC 26592, a metabolic generalist. As we have observed in previous genomic studies in the genus Caballeronia draft genomic sequences of PAMC 26592 had an assortment of genes of ecological importance and of bio-technical potentials, which include diverse metabolic genes for carbohydrates, aromatic compounds, amino acids, and vitamins, and genes for nitrogen / sulfur metabolisms, stress responses, membrane transporters, antibiotic resistance, and heavy metal resistance.

Interplay between Epigenetics and Genetics in Cancer

  • Choi, Jae Duk;Lee, Jong-Soo
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.164-173
    • /
    • 2013
  • Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hyper-methylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.

hpvPDB: An Online Proteome Reserve for Human Papillomavirus

  • Kumar, Satish;Jena, Lingaraja;Daf, Sangeeta;Mohod, Kanchan;Goyal, Peyush;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.289-291
    • /
    • 2013
  • Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The molecular understanding of HPV proteins has significant connotation for understanding their intrusion in the host and designing novel protein vaccines and anti-viral agents, etc. Genomic, proteomic, structural, and disease-related information on HPV is available on the web; yet, with trivial annotations and more so, it is not well customized for data analysis, host-pathogen interaction, strain-disease association, drug designing, and sequence analysis, etc. We attempted to design an online reserve with comprehensive information on HPV for the end users desiring the same. The Human Papillomavirus Proteome Database (hpvPDB) domiciles proteomic and genomic information on 150 HPV strains sequenced to date. Simultaneous easy expandability and retrieval of the strain-specific data, with a provision for sequence analysis and exploration potential of predicted structures, and easy access for curation and annotation through a range of search options at one platform are a few of its important features. Affluent information in this reserve could be of help for researchers involved in structural virology, cancer research, drug discovery, and vaccine design.

Draft genome sequence of Caballeronia sordidicola strain PAMC 26633 isolated from an antarctic lichen, Psoroma species (남극 지의류 Psoroma 종에서 분리한 Caballeronia sordidicola 균주 PAMC 26633의 초벌 유전체 서열 분석)

  • Kim, Junghee;Hong, Soon Gyu;Oh, Hyun-Myung
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.337-339
    • /
    • 2017
  • Here we report the draft genome sequence of the Caballeronia sordidicola strain PAMC 26633, isolated from Psoroma species, a lichen material from Barton Peninsula, King George Island in Antarctica. As we have observed in previous genomic studies in the genus Caballeronia from polar lichen, draft genomic sequences of PAMC 26633 had an assortment of genes of ecological importance and of biotechnical potentials, which include diverse metabolic genes for carbohydrates, amino acids, and genes for nitrogen/sulfur metabolisms, stress responses, membrane transporters, antibiotic resistance, and heavy metal resistance. CRISPR genes and sequences were not found and there were some phage remnants and transposons.

Complete genome sequence of Fusarium hypovirus DK2l strain and genomic diversity of dsRNA mycoviruses isolated from Fusarium graminearum

  • Lim, Won-Seok;Chu, Yeon-Mee;Lee, Yin-Won;Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.117.3-118
    • /
    • 2003
  • We tested for the presence of double-stranded RNA (dsRNA) mycovirus in 827 Fusarium graminearum isolated from diseased barley and maize. dsRNA mycoviruses with various sizes were isolated. Of them, it was previously reported that dsRNA from DK2l isolate had pronounced morphological changes, including reduction in mycelial growth, increased to red pigmentation, reduced virulence and sporulation. (Chu et al., Appl. Environ. Microbiol. 2002). For better understanding of this hypovirulence associated with DK2l dsRNA virus, we determined the complete nucleotide sequence of dsRNA genome and named Fusarium hypovirus DK2l strain (Fhv-DK2l ). Genomic RNA of Fhv-DK2l was determined to be 6625 nucleotides in length excluding the poly (A) tail and contained three putative open reading frame. RNA-dependent RNA polymerase (RdRp) and helicase domain were expected in ORF A, 54 to 4709 nucleotide position. ORE B, 4752 to 5216 nucleotide position, and ORF C, 5475 to 6578 nucleotide position, were predicted to encode 16.7kDa and 41.3kDa protein respectively each. We could not detect any conserved domains from these two proteins. Phylogenetic analysis showed Fhv-DK2l was related to Cryphonectria hypovirus 3. Ten additional isolates were found that were infected with dsRNA mycoviruses. These mycoviruses contain 2 to 4 different segments of dsRNAs with the size range of approximately 1.7 to 10-kbp in length. The presence of dsRNAs isolates did not affect colony morphology and were transmissible through conidia and ascospore with incidence of 30-100%. These results indicate that there is genomic diversity of dsRNA mycoviruses that infect F. graminearum isolates and that impact of virus infection on host's morphology and virulence is determined by the interaction between dsRNAs and the fungal host, not by the mere presence of the dsRNAs

  • PDF

Relationship Between Genome Similarity and DNA-DNA Hybridization Among Closely Related Bacteria

  • Kang, Cheol-Hee;Nam, Young-Do;Chung, Won-Hyong;Quan, Zhe-Xue;Park, Yong-Ha;Park, Soo-Je;Desmone, Racheal;Wan, Xiu-Feng;Rhee, Sung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.945-951
    • /
    • 2007
  • DNA-DNA hybridization has been established as an important technology in bacterial species taxonomy and phylogenetic analysis. In this study, we analyzed how the efficiency with which the genomic DNA from one species hybridizes to the genomic DNA of another species (DNA-DNA hybridization) in microarray analysis relates to the similarity between two genomes. We found that the predicted DNA-DNA hybridization based on genome sequence similarity correlated well with the experimentally determined microarray hybridization. Between closely related strains, significant numbers of highly divergent genes (>55% identity) and/or the accumulation of mismatches between conserved genes lowered the DNA-DNA hybridization signal, and this reduced the hybridization signals to below 70% for even bacterial strains with over 97% 16S rRNA gene identity. In addition, our results also suggest that a DNA-DNA hybridization signal intensity of over 40% indicates that two genomes at least shared 30% conserved genes (>60% gene identity). This study may expand our knowledge of DNA-DNA hybridization based on genomic sequence similarity comparison and further provide insights for bacterial phylogeny analyses.

Genome Sequence of Bacillus cereus FORC_021, a Food-Borne Pathogen Isolated from a Knife at a Sashimi Restaurant

  • Chung, Han Young;Lee, Kyu-Ho;Ryu, Sangryeol;Yoon, Hyunjin;Lee, Ju-Hoon;Kim, Hyeun Bum;Kim, Heebal;Jeong, Hee Gon;Choi, Sang Ho;Kim, Bong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2030-2035
    • /
    • 2016
  • Bacillus cereus causes food-borne illness through contaminated foods; therefore, its pathogenicity and genome sequences have been analyzed in several studies. We sequenced and analyzed B. cereus strain FORC_021 isolated from a sashimi restaurant. The genome sequence consists of 5,373,294 bp with 35.36% GC contents, 5,350 predicted CDSs, 42 rRNA genes, and 107 tRNA genes. Based on in silico DNA-DNA hybridization values, B. cereus ATCC $14579^T$ was closest to FORC_021 among the complete genome-sequenced strains. Three major enterotoxins were detected in FORC_021. Comparative genomic analysis of FORC_021 with ATCC $14579^T$ revealed that FORC_021 harbored an additional genomic region encoding virulence factors, such as putative ADP-ribosylating toxin, spore germination protein, internalin, and sortase. Furthermore, in vitro cytotoxicity testing showed that FORC_021 exhibited a high level of cytotoxicity toward INT-407 human epithelial cells. This genomic information of FORC_021 will help us to understand its pathogenesis and assist in managing food contamination.

Genomic Analysis of the Extremely Halophilic Archaeon Halobacterium noricense CBA1132 Isolated from Solar Salt That Is an Essential Material for Fermented Foods

  • Lim, Seul Ki;Kim, Joon Yong;Song, Hye Seon;Kwon, Min-Sung;Lee, Jieun;Oh, Young Jun;Nam, Young-Do;Seo, Myung-Ji;Lee, Dong-Gi;Choi, Jong-Soon;Yoon, Changmann;Sohn, Eunju;Rahman, MD. Arif-Ur;Roh, Seong Woon;Choi, Hak-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1375-1382
    • /
    • 2016
  • The extremely halophilic archaeon Halobacterium noricense is a member of the genus Halobacterium. Strain CBA1132 (= KCCM 43183, JCM 31150) was isolated from solar salt. The genome of strain CBA1132 assembled with 4 contigs, including three rRNA genes, 44 tRNA genes, and 3,208 open reading frames. Strain CBA1132 had nine putative CRISPRs and the genome contained genes encoding metal resistance determinants: copper-translocating P-type ATPase (CtpA), arsenical pump-driving ATPase (ArsA), arsenate reductase (ArsC), and arsenical resistance operon repressor (ArsR). Strain CBA1132 was related to Halobacterium noricense, with 99.2% 16S rRNA gene sequence similarity. Based on the comparative genomic analysis, strain CBA1132 has distinctly evolved; moreover, essential genes related to nitrogen metabolism were only detected in the genome of strain CBA1132 among the reported genomes in the genus Halobacterium. This genome sequence of Halobacterium noricense CBA1132 may be of use in future molecular biological studies.

Identification and Cloning of jipA Encoding a Polypeptide That Interacts with a Homolog of Yeast Rad6, UVSJ in Aspergillus nidulans

  • Cho, Jae-Han;Yun, Seok-Soong;Jang, Young-Kug;Cha, Mee-Jeong;Kwon, Nak-Jung;Chae, Suhn-Kee
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • RAD6 in yeast mediates postreplication DNA repair and is responsible for DNA-damage induced mutations. RAD6 encodes ubiquitin-conjugating enzyme that is well conserved among eukaryotic organisms. However, the molecular targets and consequences of their ubiquitination by Rad6 have remained elusive. In Aspergillus nidulans, a RAD6 homolog has been isolated and shown to be an allele of uvs). We screened a CDNA library to isolate UVSJ-interacting proteins by the yeast two-hybrid system. JIPA was identified as an interactor of UVSJ. Their interaction was confirmed in vitro by a GST-pull down assay. JIPA was also able to interact with mutant UVSJ proteins, UVSJl and the active site cysteine mutant UVSJ-C88A. The N- and the C-terminal regions of UVSJ required for the interaction with UVSH, a RAD18 homolog of yeast which physically interacts with Rad6, were not necessary for the JIPA and UVSJ interactions. About 1.4 kb jipA transcript was detected in Northern analysis and its amount was not significantly increased in response to DNA-damaging agents. A genomic DNA clone of the jipA gene was isolated from a chromosome I specific genomic library by PCR-sib selection. Sequence determination of genomic and cDNA of jipA revealed an ORF of 893 bp interrupted by 2 introns, encoding a putative polypeptide of 262 amino acids. JIPA has 33% amino acid sequence identity to TIP41 of Saccharomyces cerevisiae which negatively regulates the TOR signaling pathway.