• Title/Summary/Keyword: Genomic Evaluation

Search Result 113, Processing Time 0.026 seconds

First Korean Case of 16p11.2 Duplication Syndrome Diagnosed by Chromosomal Microarray Analysis

  • Shim, Ye Jee;Park, So Yun;Jung, Nani;Kang, Seok Jin;Kim, Heung Sik;Ha, Jung-Sook
    • Journal of Interdisciplinary Genomics
    • /
    • v.1 no.1
    • /
    • pp.10-13
    • /
    • 2019
  • A 10-year and 5 month-old girl with developmental delay, intellectual disability, attention deficit hyperactivity disorder, poor weight gain, and microcephaly was transferred to our pediatric clinic for genetic evaluation. Her height was within the 5-10th percentile, and her weight was under the 3rd percentile. On the social maturity scale, her developmental status was scored as 3 years 9 months for social age, and the social quotient was 35.98. A chromosomal microarray analysis was performed and the microduplication at chromosome 16p was observed: arr[GRCh37] 16p11.2 (29580020_30190029)${\times}3$. Currently, the patient is diagnosed with Grade 2 intellectual disability and is attending a computerized cognitive rehabilitation class twice weekly. In addition, nutritional support and growth follow up are also ensured in the Pediatric Gastrointestinal and Endocrinology clinic.

Identification of the associations between genes and quantitative traits using entropy-based kernel density estimation

  • Yee, Jaeyong;Park, Taesung;Park, Mira
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.17.1-17.11
    • /
    • 2022
  • Genetic associations have been quantified using a number of statistical measures. Entropy-based mutual information may be one of the more direct ways of estimating the association, in the sense that it does not depend on the parametrization. For this purpose, both the entropy and conditional entropy of the phenotype distribution should be obtained. Quantitative traits, however, do not usually allow an exact evaluation of entropy. The estimation of entropy needs a probability density function, which can be approximated by kernel density estimation. We have investigated the proper sequence of procedures for combining the kernel density estimation and entropy estimation with a probability density function in order to calculate mutual information. Genotypes and their interactions were constructed to set the conditions for conditional entropy. Extensive simulation data created using three types of generating functions were analyzed using two different kernels as well as two types of multifactor dimensionality reduction and another probability density approximation method called m-spacing. The statistical power in terms of correct detection rates was compared. Using kernels was found to be most useful when the trait distributions were more complex than simple normal or gamma distributions. A full-scale genomic dataset was explored to identify associations using the 2-h oral glucose tolerance test results and γ-glutamyl transpeptidase levels as phenotypes. Clearly distinguishable single-nucleotide polymorphisms (SNPs) and interacting SNP pairs associated with these phenotypes were found and listed with empirical p-values.

Development of Wheat Breeding Material Mediated wide Hybridization Response to Climate Change

  • Seong-Wook Kang;Ji-Yoon Han;Seong-Woo Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.293-293
    • /
    • 2022
  • This study is to develop new wheat breeding material through wide hybridization with wild species harboring useful characteristics such as salt, heat, and drought tolerance. Leymus mollis, wild rye was used to improve wheat genetic quality. L. mollis, is a perennial plant harboring tolerance against salt, heat, and drought because L. mollis distributes on the seaside. The F1 hybrids were produced by crossing between common wheat (Triticum aestivum L., Chinese Spring) and L. mollis. Genomic in situ hybridization revealed that the F1 hybrids have L. mollis genome. For the evaluation of salt and drought tolerance, seeds from the F2 were used. Under 2% NaCl solution, the F3 wheat-Leymus addition plants with salt tolerance showed more tillering and longer roots than other F3 plants without salt tolerance. Also, the F3 plants with salt tolerance showed better shallow-rooted than other F3 plants without salt tolerance. Finally, the F3 plants with salt tolerance made seed-setting under 2% NaCl condition, but other F3 plants without salt tolerance were not. Under drought conditions, the F3 plants with drought tolerance showed longer culm and spike length than other F3 plants without drought tolerance and even those of Chinese Spring under well-water conditions. We evaluated and selected the F3 plants with salt or drought tolerance for generation advancement.

  • PDF

Comparative Evaluation of Selective Media for Isolation of Bifidobacterium Species in Human Fecal Sample (인체 분변에서 Bifidobacterium species의 선택적 분리를 위한 배지 비교)

  • Saeyoun Shin;Sejong Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • This study aimed to evaluate the appropriateness of MRS-C (0.05% L-cystein; pH 5) and BHI-CM (0.05% L-cystein, 0.5% mucin) agars for the selective isolation of bifidobacteria in fecal samples compared to blood-liver-NPNL (BL-NPNL) agar. Over 200 isolated colonies were characterized morphologically and biochemically. Genomic DNA was extracted from pure cultures of the isolated strains, followed by PCR amplification of the 16S rRNA gene. Bifidobacterium longum and B. animalis were selectively isolated from MRS-C agar and Lactobacillus acidophilus and Enterococcus avium were also isolated. B. longum, B. faecale, and B. animalis were isolated from feces on BHI-CM agar; however, different Bacteroides strains (including Bac. fragilis, Bac. kiribbi, Bac. ovatus, Bac. koreensis, and Bac. salyersiae) were also detected. BL-NPNL agar successfully isolated B. longum and Bacillus, while other Bifidobacterium and Bacteroides species could not grow owing to the presence of antibiotics in the medium. The use of antibiotics in a medium can enhance the selectivity; however, antibiotics may inhibit the growth of certain bacteria in a sample. Hence, adjusting pH or adding non-antibiotic nutrients to the medium is more advantageous, than relying on antibiotics.

Development and Evaluation of a Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods

  • Dong-Geun Park;Eun-Su Ha;Byungcheol Kang;Iseul Choi;Jeong-Eun Kwak;Jinho Choi;Jeongwoong Park;Woojung Lee;Seung Hwan Kim;Soon Han Kim;Ju-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.83-95
    • /
    • 2023
  • These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.

Investigation of Immune Biomarkers Using Subcutaneous Model of M. tuberculosis Infection in BALB/c Mice: A Preliminary Report

  • Husain, Aliabbas A.;Daginawala, Hatim F.;Warke, Shubangi R.;Kalorey, Devanand R.;Kurkure, Nitin V.;Purohit, Hemant J.;Taori, Girdhar M.;Kashyap, Rajpal S.
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.83-90
    • /
    • 2015
  • Evaluation and screening of vaccines against tuberculosis depends on development of proper cost effective disease models along with identification of different immune markers that can be used as surrogate endpoints of protection in preclinical and clinical studies. The objective of the present study was therefore evaluation of subcutaneous model of M.tuberculosis infection along with investigation of different immune biomarkers of tuberculosis infection in BALB/c mice. Groups of mice were infected subcutaneously with two different doses : high ($2{\times}10^6CFU$) and low doses ($2{\times}10^2CFU$) of M.tuberculosis and immune markers including humoral and cellular markers were evaluated 30 days post M.tuberculosis infections. Based on results, we found that high dose of subcutaneous infection produced chronic disease with significant (p<0.001) production of immune markers of infection like $IFN{\gamma}$, heat shock antigens (65, 71) and antibody titres against panel of M.tuberculosis antigens (ESAT-6, CFP-10, Ag85B, 45kDa, GroES, Hsp-16) all of which correlated with high bacterial burden in lungs and spleen. To conclude high dose of subcutaneous infection produces chronic TB infection in mice and can be used as convenient alternative to aerosol models in resource limited settings. Moreover assessment of immune markers namely mycobacterial antigens and antibodies can provide us valuable insights on modulation of immune response post infection. However further investigations along with optimization of study protocols are needed to justify the outcome of present study and establish such markers as surrogate endpoints of vaccine protection in preclinical and clinical studies in future.

Comparative Evaluation of Intron Prediction Methods and Detection of Plant Genome Annotation Using Intron Length Distributions

  • Yang, Long;Cho, Hwan-Gue
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Intron prediction is an important problem of the constantly updated genome annotation. Using two model plant (rice and $Arabidopsis$) genomes, we compared two well-known intron prediction tools: the Blast-Like Alignment Tool (BLAT) and Sim4cc. The results showed that each of the tools had its own advantages and disadvantages. BLAT predicted more than 99% introns of whole genomic introns with a small number of false-positive introns. Sim4cc was successful at finding the correct introns with a false-negative rate of 1.02% to 4.85%, and it needed a longer run time than BLAT. Further, we evaluated the intron information of 10 complete plant genomes. As non-coding sequences, intron lengths are not limited by a triplet codon frame; so, intron lengths have three phases: a multiple of three bases (3n), a multiple of three bases plus one (3n + 1), and a multiple of three bases plus two (3n + 2). It was widely accepted that the percentages of the 3n, 3n + 1, and 3n + 2 introns were quite similar in genomes. Our studies showed that 80% (8/10) of species were similar in terms of the number of three phases. The percentages of 3n introns in $Ostreococcus$ $lucimarinus$ was excessive (47.7%), while in $Ostreococcus$ $tauri$, it was deficient (29.1%). This discrepancy could have been the result of errors in intron prediction. It is suggested that a three-phase evaluation is a fast and effective method of detecting intron annotation problems.

Identification of Medicinal Mushroom Species Based on Nuclear Large Subunit rDNA Sequences

  • Lee Ji Seon;Lim Mi Ok;Cho Kyoung Yeh;Cho Jung Hee;Chang Seung Yeup;Nam Doo Hyun
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.29-34
    • /
    • 2006
  • The purpose of this study was to develop molecular identification method for medical mushrooms and their preparations based on the nucleotide sequences of nuclear large subunit (LSD) rDNA. Four specimens were collected of each of the three representative medicinal mushrooms used in Korea: Ganoderma Incidum, Coriolus versicolor, and Fomes fomentarius. Fungal material used in these experiments included two different mycelial cultures and two different fruiting bodies from wild or cultivated mushrooms. The genomic DNA of mushrooms were extracted and 3 nuclear LSU rDNA fragments were amplified: set 1 for the 1.1-kb DNA fragment in the upstream region, set 2 for the 1.2-kb fragment in the middle, and set 3 for the 1.3-kb fragment downstream. The amplified gene products of nuclear large subunit rDNA from 3 different mushrooms were cloned into E. coli vector and subjected to nucleotide sequence determination. The sequence thus determined revealed that the gene sequences of the same medicinal mushroom species were more than $99.48\%$ homologous, and the consensus sequences of 3 different medicinal mushrooms were more than $97.80\%$ homologous. Restriction analysis revealed no useful restriction sites for 6-bp recognition enzymes for distinguishing the 3 sequences from one another, but some distinctive restriction patterns were recognized by the 4-bp recognition enzymes AccII and HhaI. This analysis was also confirmed by PCR-RFLP experiments on medicinal mushrooms.

Safety Evaluation of Filamentous Fungi Isolated from Industrial Doenjang Koji

  • Lee, Jin Hee;Jo, Eun Hye;Hong, Eun Jin;Kim, Kyung Min;Lee, Inhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1397-1404
    • /
    • 2014
  • A few starters have been developed and used for doenjang fermentation but often without safety evaluation. Filamentous fungi were isolated from industrial doenjang koji, and their potential for mycotoxin production was evaluated. Two fungi were isolated; one was more dominantly present (90%). Both greenish (SNU-G) and whitish (SNU-W) fungi showed 97% and 95% internal transcribed spacer sequence identities to Aspergillus oryzae/flavus, respectively. However, the SmaI digestion pattern of their genomic DNA suggested that both belong to A. oryzae. Moreover, both fungi had morphological characteristics similar to that of A. oryzae. SNU-G and SNU-W did not form sclerotia, which is a typical characteristic of A. oryzae. Therefore, both fungi were identified to be A. oryzae. In aflatoxin gene cluster analysis, both fungi had norB-cypA genes similar to that of A. oryzae. Consistent with this, aflatoxins were not detected in SNU-G and SNU-W using ammonia vapor, TLC, and HPLC analyses. Both fungi seemed to have a whole cyclopiazonic acid (CPA) gene cluster based on PCR of the maoA, dmaT, and pks-nrps genes, which are key genes for CPA biosynthesis. However, CPA was not detected in TLC and HPLC analyses. Therefore, both fungi seem to be safe to use as doenjang koji starters and may be suitable fungal candidates for further development of starters for traditional doenjang fermentation.

Genetic diversity and relationship of Korean chicken breeds using 12 microsatellite markers

  • Kim, Yesong;Yun, Ji Hye;Moon, Seon Jeong;Seong, Jiyeon;Kong, Hong Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.154-161
    • /
    • 2021
  • A number of Korean Chicken breeds were registered in Domestic Animal Diversity Information System (DAD-IS, http://dad.fao.org/) of the Food and Agriculture Organization (FAO). Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. Therefore, this study aimed to analysis the genetic diversity and relationship of 22 Korean Chicken breeds using 12 microsatellite (MS) markers. The mean number of alleles for each variety was 5.52, ranging from a 3.75 (Leghorn F; NF) to a 7.0 (Ross). The most diverse breed was the Hanhyup3 (HCC), which had the highest expected heterozygosity (HExp) (0.754) and polymorphic information content (PIC) (0.711). The NF was the least diverse population, having the lowest HExp (0.467) and PIC (0.413). As a result of the principal coordinates analysis (PCoA) and factorial correspondence analysis (FCA) confirmed that Hy-line Brown (HL) and Lohmann Brown (LO) are very close to each other and that Leghorn and Rhode Island Red (RIR) are clearly distinguished from other groups. Thus, the reliability and power of identification using 12 types of MS markers were improved, and the genetic diversity and probability of individual discrimination were confirmed through statistical analysis. This study is expected to be used as basic data for the identification of Korean chicken breeds, and our results indicated that these multiplex PCR marker sets will have considerable applications in population genetic structure analysis.