• Title/Summary/Keyword: Genomic Evaluation

Search Result 113, Processing Time 0.025 seconds

Novel Real Time PCR Method for Detection of Plasmodium vivax (새로운 Real Time PCR 방법을 통한 Malaria(Plasmodium vivax)의 검출)

  • Ki, Yeon-Ah;Kim, So-Youn
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.148-153
    • /
    • 2005
  • Malaria is a re-emerging infectious disease that is spreading to areas where it had been eradicated, such as Eastern Europe and Central Asia. To avoid the mortality from malaria, early detection of the parasite is a very important issue. The peripheral blood smear has been the gold standard method for the diagnosis of malaria infection. Recently, several other methods have been introduced for quantitative detection of malaria parasites. Real time PCR that employs fluorescent labels to enable the continuous monitoring of PCR product formation throughout the reaction has recently been used to detect several human malaria parasites. 18S rRNA sequences from malaria parasites have been amplified using Taqman real time PCR assay. Here, a SYBR Green-based real time quantitative PCR assay for the detection of malaria parasite-especially, Plasmodium vivax - was applied for the evaluation of 26 blood samples from Korean malaria patients. Even though SYBR Green-based real time PCR is easier and cheaper than Taqman-based assay, SYBR Green-based assay cannot be used because 18S rRNA cannot be specifically amplified using 1 primer set. Therefore, we used DBP gene sequences from Plasmodium vivax, which is specific for the SYBR Green based assays. We amplified the DBP gene from the 26 blood samples of malaria patients using SYBR Green based assay and obtained the copy numbers of DBP genes for each sample. Also, we selected optimal reference gene between ACTB and B2M using real time assay to get the stable genes regardless of Malaria titer. Using selected ACTB reference genes, we successfully converted the copy numbers from samples into titer, ${\sharp}$ of parasites per microliter. Using the resultant titer from DBP based SYBER Green assay with ACTB reference gene, we compared the results from our study with the titer from Taqman-based assay. We found that our results showed identical tendency with the results of 18S rRNA Taqman assay, especially in lower titer range. Thus, our DBP gene-utilized real time assay can detect Plasmodium vivax in Korean patient group semi-quantitatively and easily.

Detection of Point Mutations in the rpoB Gene Related to Drug Susceptibility in Mycobacterium Tuberculosis using an Oligonucleotide Chip (올리고뉴클레오티드 칩(Oligonucleotide Chip)을 이용한 항결핵제 감수성과 관련된 Mycobacterium tuberculosis rpoB 유전자의 점돌연변이 판별 방법)

  • Kim, Hyun-Jung;Kim, Seong-Keun;Shim, Tae-Sun;Park, Yong-Doo;Park, Mi-Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.29-41
    • /
    • 2001
  • Background : The appearance of multiple-drug-resistant Mycobacterium tuberculosis strains has been seriously compromising successful control of tuberculosis. Rifampin-resistance, caused by mutations in the rpoB gene, can be indicative of multiple-drug-resistance, and its detection is of great importance. The present study aimed to develop an oligonucleotide chip for accurate and convenient screening of drug-resistance. Methods : In order to detect point mutations in the rpoB gene, an oligonucleotide chip was prepared by immobilizing specific probe DNA to a microscopic slide glass by a chemical reaction. The probe DNA that was selected from the 81 bp core region of the rpoB gene was designed to have mutation sites at the center. A total of 17 mutant probes related to rifampin-resistance including 8 rifabutin-sensitive mutant probes were used in this study. For accurate determination, wild type probes were prepared for each mutation position with an equal length, which enabled a direct comparison of the hybridization intensities between the mutant and wild type. Results : Mycobacterial genomic DNA from clinical samples was tested with the oligonucleotide chip and the results were compared with those of the drug-susceptibility test in addition to sequencing and INNO-LiPA Rif. TB kit test in some cases. Out of 15 samples, the oligonucleotide chip results of 13 samples showed good agreement with the rifabutin-sensitivity results. The two samples with conflicting result also showed a discrepancy between the other tests, suggesting such possibilities as existence of mixed strains and difference in drug-sensitivity. Further verification of these samples in addition to more case studies are required before the final evaluation of the oligonucleotide chip can be made. Conlcusion : An oligonucleotide chip was developed for the detection of rpoB gene mutations related to drugsusceptibility. The results to date show the potential for using the oligonucleotide chip for accurate and convenient screening of drug-resistance to provide useful information in antituberculosis drug therapy.

  • PDF

Development of Elite Lines with Improved Eating Quality Using RIL Population Derived from the Korean Weedy Rice, Wandoaengmi6 (국내 잡초벼(완도앵미6) 유래 RILs 집단의 식미 관련 특성분석 및 우량계통 선발)

  • Kim, Suk-Man;Park, Seul-Gi;Park, Hyun-Su;Baek, Man-Kee;Jeong, Jong-Min;Cho, Young-Chan;Suh, Jung-Pil;Lee, Keon-Mi;Lee, Chang-Min;Kim, Choon-Song
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.4
    • /
    • pp.428-436
    • /
    • 2019
  • As the main objective of rice breeding programs, rice eating quality is one of critical factors directly determining the market price and the consumer preference. However, the genetic complexity of eating quality and the difficulty in accurate evaluation often constrain improvement of the eating quality in rice breeding programs. In addition, given that the rice eating quality of current cultivars has already reached some high-level, diversifying of genetic resources are demanded more than ever to improve the rice eating quality. In this study, we developed a recombinant inbred lines (RILs) population derive from Wandoaengmi6, a japonica-type Korean weedy rice with high eating quality and a high degree of glossiness of cooked rice. Year-to-year correlations between the traits in three years were shown normal distribution for major agronomic traits and physicochemical characteristics. After evaluating tested traits related to eating quality procedure, a total of ten lines were ultimately selected from the population. Increasement of the taste of cooked rice (TA) and the overall eating quality (OE) were confirmed in the selected lines, which are caused by alleles derived from Wandoaengmi6 without any linkage drag. These results indicate that the utility of wide genomic resources in Korean landrace could be of application in various rice breeding programs and countermeasure to contribute to properly response to climate change.