• Title/Summary/Keyword: Genomic Evaluation

Search Result 113, Processing Time 0.019 seconds

Genetic evaluation of sheep for resistance to gastrointestinal nematodes and body size including genomic information

  • Torres, Tatiana Saraiva;Sena, Luciano Silva;dos Santos, Gleyson Vieira;Filho, Luiz Antonio Silva Figueiredo;Barbosa, Bruna Lima;Junior, Antonio de Sousa;Britto, Fabio Barros;Sarmento, Jose Lindenberg Rocha
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.516-524
    • /
    • 2021
  • Objective: The genetic evaluation of Santa Inês sheep was performed for resistance to gastrointestinal nematode infection (RGNI) and body size using different relationship matrices to assess the efficiency of including genomic information in the analyses. Methods: There were 1,637 animals in the pedigree and 500, 980, and 980 records of RGNI, thoracic depth (TD), and rump height (RH), respectively. The genomic data consisted of 42,748 SNPs and 388 samples genotyped with the OvineSNP50 BeadChip. The (co)variance components were estimated in single- and multi-trait analyses using the numerator relationship matrix (A) and the hybrid matrix H, which blends A with the genomic relationship matrix (G). The BLUP and single-step genomic BLUP methods were used. The accuracies of estimated breeding values and Spearman rank correlation were also used to assess the feasibility of incorporating genomic information in the analyses. Results: The heritability estimates ranged from 0.11±0.07, for TD (in single-trait analysis using the A matrix), to 0.38±0.08, for RH (using the H matrix in multi-trait analysis). The estimates of genetic correlation ranged from -0.65±0.31 to 0.59±0.19, using A, and from -0.42±0.30 to 0.57±0.16 using H. The gains in accuracy of estimated breeding values ranged from 2.22% to 75.00% with the inclusion of genomic information in the analyses. Conclusion: The inclusion of genomic information will benefit the direct selection for the traits in this study, especially RGNI and TD. More information is necessary to improve the understanding on the genetic relationship between resistance to nematode infection and body size in Santa Inês sheep. The genetic evaluation for the evaluated traits was more efficient when genomic information was included in the analyses.

Single-step genomic evaluation for growth traits in a Mexican Braunvieh cattle population

  • Jonathan Emanuel Valerio-Hernandez;Agustin Ruiz-Flores;Mohammad Ali Nilforooshan;Paulino Perez-Rodriguez
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1003-1009
    • /
    • 2023
  • Objective: The objective was to compare (pedigree-based) best linear unbiased prediction (BLUP), genomic BLUP (GBLUP), and single-step GBLUP (ssGBLUP) methods for genomic evaluation of growth traits in a Mexican Braunvieh cattle population. Methods: Birth (BW), weaning (WW), and yearling weight (YW) data of a Mexican Braunvieh cattle population were analyzed with BLUP, GBLUP, and ssGBLUP methods. These methods are differentiated by the additive genetic relationship matrix included in the model and the animals under evaluation. The predictive ability of the model was evaluated using random partitions of the data in training and testing sets, consistently predicting about 20% of genotyped animals on all occasions. For each partition, the Pearson correlation coefficient between adjusted phenotypes for fixed effects and non-genetic random effects and the estimated breeding values (EBV) were computed. Results: The random contemporary group (CG) effect explained about 50%, 45%, and 35% of the phenotypic variance in BW, WW, and YW, respectively. For the three methods, the CG effect explained the highest proportion of the phenotypic variances (except for YW-GBLUP). The heritability estimate obtained with GBLUP was the lowest for BW, while the highest heritability was obtained with BLUP. For WW, the highest heritability estimate was obtained with BLUP, the estimates obtained with GBLUP and ssGBLUP were similar. For YW, the heritability estimates obtained with GBLUP and BLUP were similar, and the lowest heritability was obtained with ssGBLUP. Pearson correlation coefficients between adjusted phenotypes for non-genetic effects and EBVs were the highest for BLUP, followed by ssBLUP and GBLUP. Conclusion: The successful implementation of genetic evaluations that include genotyped and non-genotyped animals in our study indicate a promising method for use in genetic improvement programs of Braunvieh cattle. Our findings showed that simultaneous evaluation of genotyped and non-genotyped animals improved prediction accuracy for growth traits even with a limited number of genotyped animals.

Genetic evaluation and accuracy analysis of commercial Hanwoo population using genomic data

  • Gwang Hyeon Lee;Yeon Hwa Lee;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.32-37
    • /
    • 2023
  • This study has evaluated the genomic estimated breeding value (GEBV) of the commercial Hanwoo population using the genomic best linear unbiased prediction (GBLUP) method and genomic information. Furthermore, it analyzed the accuracy and realized accuracy of the GEBV. 1,740 heads of the Hanwoo population which were analyzed using a single nucleotide polymorphism (SNP) Chip has selected as the test population. For carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS), the mean GEBVs estimated using the GBLUP method were 3.819, 0.740, -0.248, and 0.041, respectively and the accuracy of each trait was 0.743, 0.728, 0.737, and 0.765, respectively. The accuracy of the breeding value was affected by heritability. The accuracy was estimated to be low in EMA with low heritability and high in MS with high heritability. Realized accuracy values of 0.522, 0.404, 0.444, and 0.539 for CWT, EMA, BFT, and MS, respectively, showing the same pattern as the accuracy value. The results of this study suggest that the breeding value of each individual can be estimated with higher accuracy by estimating the GEBV using the genomic information of 18,499 reference populations. If this method is used and applied to individual selection in a commercial Hanwoo population, more precise and economical individual selection is possible. In addition, continuous verification of the GBLUP model and establishment of a reference population suitable for commercial Hanwoo populations in Korea will enable a more accurate evaluation of individuals.

Prediction of Genomic Relationship Matrices using Single Nucleotide Polymorphisms in Hanwoo (한우의 유전체 표지인자 활용 개체 혈연관계 추정)

  • Lee, Deuk-Hwan;Cho, Chung-Il;Kim, Nae-Soo
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.357-366
    • /
    • 2010
  • The emergence of next-generation sequencing technologies has lead to application of new computational and statistical methodologies that allow incorporating genetic information from entire genomes of many individuals composing the population. For example, using single-nucleotide polymorphisms (SNP) obtained from whole genome amplification platforms such as the Ilummina BovineSNP50 chip, many researchers are actively engaged in the genetic evaluation of cattle livestock using whole genome relationship analyses. In this study, we estimated the genomic relationship matrix (GRM) and compared it with one computed using a pedigree relationship matrix (PRM) using a population of Hanwoo. This project is a preliminary study that will eventually include future work on genomic selection and prediction. Data used in this study were obtained from 187 blood samples consisting of the progeny of 20 young bulls collected after parentage testing from the Hanwoo improvement center, National Agriculture Cooperative Federation as well as 103 blood samples from the progeny of 12 proven bulls collected from farms around the Kyong-buk area in South Korea. The data set was divided into two cases for analysis. In the first case missing genotypes were included. In the second case missing genotypes were excluded. The effect of missing genotypes on the accuracy of genomic relationship estimation was investigated. Estimation of relationships using genomic information was also carried out chromosome by chromosome for whole genomic SNP markers based on the regression method using allele frequencies across loci. The average correlation coefficient and standard deviation between relationships using pedigree information and chromosomal genomic information using data which was verified using a parentage test andeliminated missing genotypes was $0.81{\pm}0.04$ and their correlation coefficient when using whole genomic information was 0.98, which was higher. Variation in relationships between non-inbred half sibs was $0.22{\pm}0.17$ on chromosomal and $0.22{\pm}0.04$ on whole genomic SNP markers. The variations were larger and unusual values were observed when non-parentage test data were included. So, relationship matrix by genomic information can be useful for genetic evaluation of animal breeding.

National genomic evaluation of Korean thoroughbreds through indirect racing phenotype

  • Lee, Jinwoo;Shin, Donghyun;Kim, Heebal
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.659-669
    • /
    • 2022
  • Objective: Thoroughbred horses have been bred exclusively for racing in England for a long time. Additionally, because horse racing is a global sport, a healthy leisure activity for ordinary citizens, and a high-value business, systematic racehorse breeding at the population level is a requirement for continuous industrial development. Therefore, we established genomic evaluation system (using prize money as horse racing traits) to produce spirited, agile, and strong racing horse population Methods: We used phenotypic data from 25,061 Thoroughbred horses (all registered individuals in Korea) that competed in races between 1994 and 2019 at the Korea Racing Authority and constructed pedigree structures. We quantified the improvement in racehorse breeding output by year in Korea, and this aided in the establishment of a high-level horse-fill industry. Results: We found that pedigree-based best linear unbiased prediction method improved the racing performance of the Thoroughbred population with high accuracy, making it possible to construct an excellent Thoroughbred racehorse population in Korea. Conclusion: This study could be used to develop an efficient breeding program at the population level for Korean Thoroughbred racehorse populations as well as others.

Genomic Heritability of Bovine Growth Using a Mixed Model

  • Ryu, Jihye;Lee, Chaeyoung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1521-1525
    • /
    • 2014
  • This study investigated heritability for bovine growth estimated with genomewide single nucleotide polymorphism (SNP) information obtained from a DNA microarray chip. Three hundred sixty seven Korean cattle were genotyped with the Illumina BovineSNP50 BeadChip, and 39,112 SNPs of 364 animals filtered by quality assurance were analyzed to estimate heritability of body weights at 6, 9, 12, 15, 18, 21, and 24 months of age. Restricted maximum likelihood estimate of heritability was obtained using covariance structure of genomic relationships among animals in a mixed model framework. Heritability estimates ranged from 0.58 to 0.76 for body weights at different ages. The heritability estimates using genomic information in this study were larger than those which had been estimated previously using pedigree information. The results revealed a trend that the heritability for body weight increased at a younger age (6 months). This suggests an early genetic evaluation for bovine growth using genomic information to increase genetic merits of animals.

Isolation of Human CYP4F2 genomic DNA and its $5^I$ End Regulatory Region Structure

  • Jin, Hyung-Jong
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.35-40
    • /
    • 1998
  • Human cytochrome P450 4F2 shows high regioselectivity in hydroxylation of stearic acid and leukotriene $ B_4.$ As a first step of its regulation study, human cytochrome P450 4F2 genomic DNA was isolated from liver of a person who was administered clofibrate for 10 years. From Southern hybridization, restriction enzyme digestion and sequencing experiments, isolated genomic DNA fragment was found to contain around 32 Kb DNA and more than 20 Kb of $5^I$ end regulatory region. Sequences of the structural gene region revealed exon 1 and exon 2. Further regulation studies would elucidate the feedback mechanisms of the oxidative degradation of fatty acids, inflammatory response and the clearance of leukotriene B4 in the liver. Furthermore, regulation study of this gene could explain the species difference in responses to peroxisome proliferator and help in the safety evaluation of peroxisome proliferating chemicals to human being.

  • PDF

Evaluation of accuracies of genomic predictions for body conformation traits in Korean Holstein

  • Md Azizul Haque;Mohammad Zahangir Alam;Asif Iqbal;Yun Mi Lee;Chang Gwon Dang;Jong Joo Kim
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.555-566
    • /
    • 2024
  • Objective: This study aimed to assess the genetic parameters and accuracy of genomic predictions for twenty-four linear body conformation traits and overall conformation scores in Korean Holstein dairy cows. Methods: A dataset of 2,206 Korean Holsteins was collected, and genotyping was performed using the Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The traits investigated included body traits (stature, height at front end, chest width, body depth, angularity, body condition score, and locomotion), rump traits (rump angle, rump width, and loin strength), feet and leg traits (rear leg set, rear leg rear view, foot angle, heel depth, and bone quality), udder traits (udder depth, udder texture, udder support, fore udder attachment, front teat placement, front teat length, rear udder height, rear udder width, and rear teat placement), and overall conformation score. Accuracy of genomic predictions was assessed using the single-trait animal model genomic best linear unbiased prediction method implemented in the ASReml-SA v4.2 software. Results: Heritability estimates ranged from 0.10 to 0.50 for body traits, 0.21 to 0.35 for rump traits, 0.13 to 0.29 for feet and leg traits, and 0.05 to 0.46 for udder traits. Rump traits exhibited the highest average heritability (0.29), while feet and leg traits had the lowest estimates (0.21). Accuracy of genomic predictions varied among the twenty-four linear body conformation traits, ranging from 0.26 to 0.49. The heritability and prediction accuracy of genomic estimated breeding value (GEBV) for the overall conformation score were 0.45 and 0.46, respectively. The GEBVs for body conformation traits in Korean Holstein cows had low accuracy, falling below the 50% threshold. Conclusion: The limited response to selection for body conformation traits in Korean Holsteins may be attributed to both the low heritability of these traits and the lower accuracy estimates for GEBVs. Further research is needed to enhance the accuracy of GEBVs and improve the selection response for these traits.

Comparison of the estimated breeding value and accuracy by imputation reference Beadchip platform and scaling factor of the genomic relationship matrix in Hanwoo cattle

  • Soo Hyun, Lee;Chang Gwon, Dang;Mina, Park;Seung Soo, Lee;Young Chang, Lee;Jae Gu, Lee;Hyuk Kee, Chang;Ho Baek, Yoon;Chung-il, Cho;Sang Hong, Lee;Tae Jeong, Choi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.431-440
    • /
    • 2022
  • Hanwoo cattle are a unique and historical breed in Korea that have been genetically improved and maintained by the national evaluation and selection system. The aim of this study was to provide information that can help improve the accuracy of the estimated breeding values in Hanwoo cattle by showing the difference between the imputation reference chip platforms of genomic data and the scaling factor of the genetic relationship matrix (GRM). In this study, nine sets of data were compared that consisted of 3 reference platforms each with 3 different scaling factors (-0.5, 0 and 0.5). The evaluation was performed using MTG2.0 with nine different GRMs for the same number of genotyped animals, pedigree, and phenotype data. A five multi-trait model was used for the evaluation in this study which is the same model used in the national evaluation system. Our results show that the Hanwoo custom v1 platform is the best option for all traits, providing a mean accuracy improvement by 0.1 - 0.3%. In the case of the scaling factor, regardless of the imputation chip platform, a setting of -1 resulted in a better accuracy increased by 0.5 to 1.6% compared to the other scaling factors. In conclusion, this study revealed that Hanwoo custom v1 used as the imputation reference chip platform and a scaling factor of -0.5 can improve the accuracy of the estimated breeding value in the Hanwoo population. This information could help to improve the current evaluation system.