• Title/Summary/Keyword: Genomic DNA.

Search Result 1,936, Processing Time 0.026 seconds

Isolation of Human CYP4F2 genomic DNA and its $5^I$ End Regulatory Region Structure

  • Jin, Hyung-Jong
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.35-40
    • /
    • 1998
  • Human cytochrome P450 4F2 shows high regioselectivity in hydroxylation of stearic acid and leukotriene $ B_4.$ As a first step of its regulation study, human cytochrome P450 4F2 genomic DNA was isolated from liver of a person who was administered clofibrate for 10 years. From Southern hybridization, restriction enzyme digestion and sequencing experiments, isolated genomic DNA fragment was found to contain around 32 Kb DNA and more than 20 Kb of $5^I$ end regulatory region. Sequences of the structural gene region revealed exon 1 and exon 2. Further regulation studies would elucidate the feedback mechanisms of the oxidative degradation of fatty acids, inflammatory response and the clearance of leukotriene B4 in the liver. Furthermore, regulation study of this gene could explain the species difference in responses to peroxisome proliferator and help in the safety evaluation of peroxisome proliferating chemicals to human being.

  • PDF

Ubiquitin E3 ligases in cancer: somatic mutation and amplification

  • Eun-Hye Jo;Mi-Yeon Kim;Hyung-Ju Lee;Hee-Sae Park
    • BMB Reports
    • /
    • v.56 no.5
    • /
    • pp.265-274
    • /
    • 2023
  • Defects in DNA double-strand break (DSB) repair signaling permit cancer cells to accumulate genomic alterations that confer their aggressive phenotype. Nevertheless, tumors depend on residual DNA repair abilities to survive the DNA damage induced by genotoxic stress. This is why only isolated DNA repair signaling is inactivated in cancer cells. DNA DSB repair signaling contributes to general mechanism for various types of lesions in diverse cell cycle phases. DNA DSB repair genes are frequently mutated and amplified in cancer; however, limited data exist regarding the overall genomic prospect and functional result of these modifications. We list the DNA repair genes and related E3 ligases. Mutation and expression frequencies of these genes were analyzed in COSMIC and TCGA. The 11 genes with a high frequency of mutation differed between cancers, and mutations in many DNA DSB repair E3 ligase genes were related to a higher total mutation burden. DNA DSB repair E3 ligase genes are involved in tumor suppressive or oncogenic functions, such as RNF168 and FBXW7, by assisting the functionality of these genomic alterations. DNA damage response-related E3 ligases, such as RNF168, FBXW7, and HERC2, were generated with more than 10% mutation in several cancer cells. This study provides a broad list of candidate genes as potential biomarkers for genomic instability and novel therapeutic targets in cancer. As a DSB related proteins considerably appear the possibilities for targeting DNA repair defective tumors or hyperactive DNA repair tumors. Based on recent research, we describe the relationship between unstable DSB repairs and DSB-related E3 ligases.

Genomic DNA Methylation Status and Plasma Homocysteine in Choline- and Folate-Deficient Rats (콜린과 엽산 결핍이 흰쥐의 Genomic DNA 메틸화와 혈장 호모시스테인에 미치는 영향)

  • Mun, Ju-Ae;Min, Hye-Sun
    • Journal of Nutrition and Health
    • /
    • v.40 no.1
    • /
    • pp.14-23
    • /
    • 2007
  • Elevated plasma homocysteine (Hcy) is a risk factor for cognitive dysfunction and Alzheimer disease, although the mechanism is still unknown. Both folate and betaine, a choline metabolite, play essential roles in the remethylation of Hcy to methionine. Choline deficiency may be associated with low folate status and high plasma Hcy. Alterations in DNA methylation also have established critical roles for methylation in development of the nervous system. This study was undertaken to assess the effect of choline and folate deficiency on Hcy metabolism and genomic DNA methylation status of the liver and brain. Groups of adult male Sprague Dawley rats were fed on a control, choline-deficient (CD), folate-deficient (FD) or choline/folate-deficient (CFD) diets for 8 weeks. FD resulted in a significantly lower hepatic folate (23%) (p<0.001) and brain folate (69%) (p<0.05) compared to the control group. However, plasma and brain folate remained unaltered by CD and hepatic folate reduced to 85% of the control by CD (p<0.05). Plasma Hcy was significantly increased by FD $(18.34{\pm}1.62{\mu}M)$ and CFD $(19.35{\pm}3.62{\mu}M)$ compared to the control $(6.29{\pm}0.60{\mu}M)$ (p<0.001), but remained unaltered by CD. FD depressed S-adenosylmethionine (SAM) by 59% (p<0.001) and elevated S-adenosylhomocysteine (SAM) by 47% in liver compared to the control group (p<0.001). In contrast, brain SAM levels remained unaltered in CD, FD and CFD rats. Genomic DNA methylation status was reduced by FD in liver (p<0.05) Genomic DNA hypomethylation was also observed in brain by CD, FD and CFD although it was not significantly different from the control group. Genomic DNA methylation status was correlated with folate stores in liver (r=-0.397, p<0.05) and brain (r = -0.390, p<0.05), respectively. In conclusion, our data demonsoated that genomic DNA methylation and SAM level were reduced by folate deficiency in liver, but not in brain, and correlated with folate concentration in the tissue. The fact that folate deficiency had differential effects on SAM, SAH and genomic DNA methylation in liver and brain suggests that the Hcy metabolism and DNA methylation are regulated in tissue-specific ways.

Genomic Species Identification of Acinetobacter calcoaceticus - Acinetobacter baumannii Complex Strains by Amplified Ribosomal DNA Restriction Analysis (ARDRA) (Amplified Ribosomal DNA Restriction Analysis (ARDRA) 방법을 이용한 국내 분리 Acinetobacter calcoaceticus - Acinetobacter baumannii Complex 균주의 유전자종 동정)

  • Oh, Jae-Young;Cho, Jae-We;Park, Jong-Chun;Lee, Je-Chul
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.1
    • /
    • pp.69-76
    • /
    • 2000
  • Members of the genus Acinetobacter are recognized as newer pathogens of the nosocomial infection with an increasing frequency in recent years. Strains that belonged to A. calcoaceticus A. baumannii complex (genomic species 1, 2, 3, and 13TU) were major groups associated with nosocomial infection. Phenotypic identification was unreliable and laborious method to classify Acinetobacter strains into 19 genomic species. Rapid and reliable identification of clinical isolates is essential to diagnosis and epidemiology of Acinetobacter. We investigated the suitability of amplified ribosomal DNA restriction analysis (ARDRA) to identify genomic species of 131 Acinetobacter isolates. The 16S rRNA genes (ribosomal DNA) were enzymatically amplified and the amplified PCR products were restricted independently with the enzymes, AluI, CfoI, and MboI. Genomic species of Acinetobacter was classified by the combinations of restriction patterns. The analysis was showed that restriction profiles were characteristic for each genomic species. One hundred fourteen isolates were identified as A. baumannii, twelve were identified as genomic species 13TU, and one was identified as genomic species 3. Four isolates were found to be unknown organisms. All of the isolates which were identified to A. baumannii by phenotypic tests were completely discriminated into A. baumannii and genomic species 13TU by ARDRA. This study demonstrates that ARDRA is a rapid and simple techniques for the identification of Acinetobacter species according to the genomic species.

  • PDF

A Novel Reciprocal Crosstalk between RNF168 and PARP1 to Regulate DNA Repair Processes

  • Kim, Jae Jin;Lee, Seo Yun;Kim, Soyeon;Chung, Jee Min;Kwon, Mira;Yoon, Jung Hyun;Park, Sangwook;Hwang, Yiseul;Park, Dongsun;Lee, Jong-Soo;Kang, Ho Chul
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.799-807
    • /
    • 2018
  • Emerging evidence has suggested that cellular crosstalk between RNF168 and poly(ADP-ribose) polymerase 1 (PARP1) contributes to the precise control of the DNA damage response (DDR). However, the direct and reciprocal functional link between them remains unclear. In this report, we identified that RNF168 ubiquitinates PARP1 via direct interaction and accelerates PARP1 degradation in the presence of poly (ADP-ribose) (PAR) chains, metabolites of activated PARP1. Through mass spectrometric analysis, we revealed that RNF168 ubiquitinated multiple lysine residues on PARP1 via K48-linked ubiquitin chain formation. Consistent with this, micro-irradiation-induced PARP1 accumulation at damaged chromatin was significantly increased by knockdown of endogenous RNF168. In addition, it was confirmed that abnormal changes of HR and HNEJ due to knockdown of RNF168 were restored by overexpression of WT RNF168 but not by reintroduction of mutants lacking E3 ligase activity or PAR binding ability. The comet assay also revealed that both PAR-binding and ubiquitin-conjugation activities are indispensable for the RNF168-mediated DNA repair process. Taken together, our results suggest that RNF168 acts as a counterpart of PARP1 in DDR and regulates the HR/NHEJ repair processes through the ubiquitination of PARP1.

Optimized Condition of Genomic DNA Extraction and PCR Methods for GMO Detection in Potato (유전자재조합 감자의 검정을 위한 DNA분리 및 PCR검출의 최적조건 탐색)

  • Shin, Weon-Sun;Kim, Myung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.591-597
    • /
    • 2003
  • To compare the quality of genomic DNA extracted from potato for PCR detection, four different methods, such as silica-based membrane method, silica-coated bead method, STE solution treatment, and CTAB-phenol/chloroform method, were evaluated. Also, to remove an excessive carbohydrate from the potato, ${\alpha}$- and ${\beta}$-amylase were used individually and in combination. When used both silica-based membrane method and silica-coated bead method combined with enzymes, the genomic DNAs were extracted from the raw potato with high purity for PCR. However, the silica-coated head method combined with enzyme treatment was the most efficient for extraction of the genomic DNA from the frozen fried potatoes. When applied with STE solution, the highly purified DNA was extracted from the raw potatoes without enzyme treatment in adequate yield for PCR. In cases of processed potatoes, such as frozen-fried potato and fabricated potato chips, CTAB-phenol/chloroform method is mostly feasible for DNA extraction and PCR efficacy at high sensitivity. As the results of PCR amplification, 216bp of PCR product was detected on 2% agarose gel electrophoresis, but any amplicons derived from New leaf and New leaf Y gene was not detected in any sample.

A Study on the Molecular Biology of Renin-Angiotensin System : Renin Gene Expression and Construction of Genomic Library (Renin-Angiotensin계의 분자생물학적 연구 : Renin유전자의 발현과 Genomic Library작성)

  • 박영순;한동민;김종호;문영희;이호섭;고건일;김성준
    • The Korean Journal of Zoology
    • /
    • v.33 no.1
    • /
    • pp.35-44
    • /
    • 1990
  • Poly (A) + RNA was isolated from mouse submaxillary gland and renin mRNA was isolated by poly (U)-sepharose chromatography and sucrose linear densiW gradient centifugation. And renin mRNA was identified by in vitro translation and immunoprecipitation. In order to construct recombinant plasmid, renin cDNA was synthesized by using reverse transcriptase and inserted into EcoRi site of PUC19. In addition, the cDNA was also synthesized using polymerase chain reaction and inserted into HindlIl site of PUC19. The recombinant plasmid was transformed into JMlO3 and the expression of the inserted renin cDNA was examined. The transformant produced renin protein having a molecular weight of 45, 000 dolton, which showed hypertensive effect upon injecting it into rabbit ear vein. A renin genomic library was prepared by inserting rabbit kidney DNA into EMBL3 phage, and was screeined for the isolation of renin gemomic DNA using renin cDNA probe.

  • PDF

Molecular Biology of Human and Rat Genomic DNAs for Eponephrine Synthesizing Enzyme (사람과 쥐의 에피네프린 합성효소의 게놈DNA에 대한 분자 생물학)

  • 서유헌;김헌식
    • Korean Journal of Cognitive Science
    • /
    • v.1 no.2
    • /
    • pp.361-376
    • /
    • 1989
  • Norepoine is N-methylated by the enzyme phenly ethanolamine N-metyltransferase(PNMT)to form epinephrine.this enzyme is larhly restructed to the adrenal medulla where epinephrine in mammalian brain where epinephrine function as a neurotransmitter.It seems clear that central epinephrine is involved in the regulation of cardiovacular function and in several forms of hypertension.However,information about the struture of mammalian epinephrine forming enzyme has been limited until now.But recently we isolate bovine and human PNMT cDNA clone using gtll expression library and sequcde total nucleotide composition.To obtain information about the structrue of the human and rat PNMT proteins and gones and to further define the extent of the evolutionary relationships among the PNMT molecules of these species human and rat genomic DNA clones to PNMT were sequentially isolated and characterized.

Characterization of the Nucleotide Sequence of a Polyubiquitin Gene (PUBC1) from Arabian Camel, Camelus dromedarius

  • Al-Khedhairy, Abdulaziz Ali A.
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.144-147
    • /
    • 2004
  • Molecular amplification and sequencing of genomic DNA that encodes camel polyubiquitin (PUBC1) was performed by a polymerase chain reaction (PCR) using various sets of primers. The amplification generated a number of DNA fragments, which were sequenced and compared with the polyubiquitin coding sequences of various species. One DNA fragment that conformed to 325 bp was found to be 95 and 88% homologous to the sequences of human polyubiquitin B and C, respectively. The DNA translated into 108 amino acids that corresponded to two fused units of ubiquitin with no intervening sequence, which indicates that it is a polyubiquitin and contains at least two units of ubiquitin. Although, variations were found in the nucleotide sequence when compared to those of other species, the amino acid sequence was 100% homologous to the polyubiquitin sequences of humans, mice, and rats. This is the first report of the polyubiquitin DNA coding sequence and its corresponding amino acid sequence from camels, amplified using direct genomic DNA preparations.

Molecular cloning, sequence polymorphism and genomic organization of far eastern catfish (Silurus asotus) GH gene

  • Park, Byul-Nim;Bang, In-Chul;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.42-42
    • /
    • 2003
  • The far eastern catfish (Silurus asotus) growth hormone (GH) gene was cloned and characterized. The complete nucleotide sequences of genomic GH gene sequences as well as a catfish GH cDNA were obtained by RT-PCR and gene filter screening. The GH cDNA and genomic gene span 1.0 and 1.8 kb from the start codon to the polyadenylation signal, respectively. Both on cDNA and gDNA GH genes, the sequence polymorphism was detected including various silence mutations. The genomic GH gene comprised of only four exons and three introns, which was novel type of fish GH gene structure. The evolutionary relation of the catfish GH gene was inferred based on the comparative phylogenic analysis using the gene structures and sequences.

  • PDF