• Title/Summary/Keyword: Genome-wide Expression

Search Result 170, Processing Time 0.024 seconds

Application of a Reassortant Cucumber mosaic virus Vector for Gene Silencing in Tomato and Chili Pepper Plants

  • Hong, Jin-Sung;Rhee, Sun-Ju;Kim, Eun-Ji;Kim, Tae-Sung;Ryu, Ki-Hyun;Masuta, Chikara;Lee, Gung-Pyo
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • We developed a reassortant RNA virus vector derived from $Cucumber$ $mosaic$ $virus$ (CMV), which has advantages of very wide host range and can efficiently induce gene silencing in a few model plants. Certain CMV isolates, however, show limited host ranges presumably because they naturally co-evolved with their own hosts. We used a reassortant comprised of two strains of CMV, Y-CMV and Gn-CMV, to broaden the host range and to develop a virus vector for virus-induced gene silencing (VIGS). Gn-CMV could infect chili pepper and tomato more efficiently than Y-CMV. Gn-CMV RNA1, 3 and Y-CMV RNA2-A1 vector were newly reconstructed, and the transcript mixture of RNA1 and 3 genomes of Gn-CMV and RNA2 genome of Y-CMV RNA2 containing portions of the endogenous phytoene desaturase (PDS) gene (CMV2A1::PDSs) was inoculated onto chili pepper (cv. Chung-yang), tomato (cvs. Bloody butcher, Tigerella, Silvery fir tree, and Czech bush) and $Nicotiana$ $benthamiana$. All the tested plants infected by the reassortant CMV vector showed typical photo-bleaching phenotypes and reduced expression levels of $PDS$ mRNA. These results suggest that the reassortant CMV vector would be a useful tool for the rapid induction of the RNA silencing of endogenous genes in chili pepper and tomato plants.

Change of Infection Properties of Subcultured Marine Birnavirus in Several Fish Cell Lines (어류 주화세포에서의 계대배양에 의한 해양버나바이러스의 감염특성의 변화)

  • Jung, Sung-Ju
    • Journal of fish pathology
    • /
    • v.11 no.2
    • /
    • pp.89-96
    • /
    • 1998
  • Marine birnavirus (MABV) has wide host range in marine organisms. To clarify various infection properties of MABV in different host species, in vitro study was performed by subculture for 10 passages in several fish cell lines. In CHSE-214, RTG-2 and RSBK-2 cells, the virus produced high yield of virus. Typical CPE with high protein expression was observed in these cells. On the contrary, the virus grown in EPC, FHM and BF-2 cells exhibited no CPE appearance although virus protein was detected. In EPC and FHM cells, the virus titer increased in later passages. The plaque size was distinctly bigger in CHSE-214, RTG-2 and RSBK-2 cells than in other cell lines. The nucleotide sequence of VP2/NS junction region on genome segment A exhibited one specific nucleotide change at 195. The different infection properties in several cell types performed in the present work might reflect in vivo MABV infection in various host species occurring in natural conditions.

  • PDF

Neurotoxin-Induced Pathway Perturbation in Human Neuroblastoma SH-EP Cells

  • Do, Jin Hwan
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.672-684
    • /
    • 2014
  • The exact causes of cell death in Parkinson's disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium ($MPP^+$) induces cellular changes characteristic of PD, and $MPP^+$-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in $MPP^+$-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in $MPP^+$-induced neuronal cell death. Moreover, the toxicity signal of $MPP^+$ resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by $MPP^+$.

Haplotype Analysis and Single Nucleotide Polymorphism Frequency of Organic Cation Transporter Gene (OCT1 and 2) in Korean Subjects

  • Kim, Se-Mi;Lee, Sang-No;Yoon, Hwa;Kang, Hyun-Ah;Cho, Hea-Young;Lee, Il-Kwon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.345-351
    • /
    • 2009
  • Organic cation transporters (OCTs) are important for absorption, elimination of many endogenous small organic cations as well as a wide array of drugs and environmental toxins. This gene is located in a cluster on chromosome 6 and OCTs are in major organs such as intestine, liver, kidney, brain and placenta. Therefore, expression levels and function of OCTs directly affect plasma levels and intracellular concentrations of drugs and thereby determine therapeutic response. The aim of this study was to investigate the frequency of the SNPs on OCT1 (C181T and C1022T) and OCT2 (G808T) to analyze haplotype frequency in healthy Korean population. Human subjects have been genotyped for OCT1 (C181T for 195 subjects and C1022T for 825 subjects), using polymerase chain reaction-based diagnostic tests (RFLP). And for OCT2 (G808T), a total of 861 subjects have been genotyped, using pyrosequencing method. Haplotype was statistically inferred using an algorithm based on the expectation-maximization (EM). OCT1 C181T genotyping showed 100% homozygous wild-type (C/C). OCT1 C1022T genotyping showed wild-type (C/C), heterozygous (C/T) and homozygous mutant-type (T/T) and each accounted for 72.1, 24.5 and 3.4%, respectively. OCT2 G808T genotyping results also showed homozygous wild-type (G/G), heterozygous (G/T) and homozygous mutant-type (T/T) and each took 81.8, 17.9 and 0.3%, respectively. Based on these genotype data, haplotype analysis between OCT1 C181T and OCT1 C1022T has proceeded. The result has revealed that linkage disequilibrium between alleles is not obvious (P=0.0122).

Isolation and Characterization of a Theta Glutathione S-transferase Gene from Panax ginseng Meyer

  • Kim, Yu-Jin;Lee, Ok-Ran;Lee, Sung-Young;Kim, Kyung-Tack;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.449-460
    • /
    • 2012
  • Plants have versatile detoxification systems to encounter the phytotoxicity of the wide range of natural and synthetic compounds present in the environment. Glutathione S-transferase (GST) is an enzyme that detoxifies natural and exogenous toxic compounds by conjugation with glutathione (GSH). Recently, several roles of GST giving stress tolerance in plants have demonstrated, but little is known about the role of ginseng GSTs. Therefore, this work aimed to provide further information on the GST gene present in Panax ginseng genome as well as its expression and function. A GST cDNA (PgGST) was isolated from P. ginseng cDNA library, and it showed the amino acid sequence similarity with theta type of GSTs. PgGST in ginseng plant was induced by exposure to metals, plant hormone, heavy metals, and high light irradiance. To improve the resistance against environmental stresses, full-length cDNA of PgGST was introduced into Nicotiana tabacum. Overexpression of PgGST led to twofold increase in GST-specific activity compared to the non-transgenic plants, and the GST overexpressed plant showed resistance against herbicide phosphinothricin. The results suggested that the PgGST isolated from ginseng might have a role in the protection mechanism against toxic materials such as heavy metals and herbicides.

Replication Association Study between RBC Indices and Genetic Variants in Korean Population

  • Lee, Sang In;Park, Sangjung;Jin, Hyun-Seok
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.190-195
    • /
    • 2019
  • Hemoglobin (Hb) concentrations and hematocrit (Hct) values can be changed by factors such as erythrocyte production, destruction, and bleeding. In addition, variants in the protein expression involved in the amount of red blood cells that determine Hb metabolism or Hct value can increase susceptibility to complex blood diseases. Previous studies have reported significant single nucleotide polymorphisms (SNPs) by applying a genome-wide association study (GWAS) on Hb levels and Hct values in European population. In this study, we confirmed whether the significant SNPs are replicated in Koreans. In previous studies, 26 and 18 SNPs with a significant correlation Hb and Hct were identified in Korean genotype data, and 21 and 12 SNPs were selected, respectively. The SNPs of PRKCE (rs10495928), TMPRSS6 (rs2235321, rs5756505, rs855791) were significantly associated with Hb (P<0.05). In the association analysis of Hct, the SNPs of HBS1L (rs6920211, rs9389268, rs9483788), PRKCE (rs4953318), SCGN (rs9348689) and TMPRSS6 (rs2413450) genes showed a significant correlation (P<0.05). Replicated SNPs and not replicated SNPs showed the difference of genetic distance calculated by Fst. The replicated SNPs with a significant correlation showed similar allele frequencies, whereas the not replicated SNPs showed a large difference in allele frequency. All replicated SNPs with significant correlations had Fst values less than 0.05, indicating that the genetic distance between the groups was close. On the other hand, the not replicated SNPs showed that the Fst value was 0.05 or more and the genetic distance was relatively large.

Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.572-579
    • /
    • 2019
  • Background: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. Methods: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. Results: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. Conclusion: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

Identification of plasma miRNA biomarkers for pregnancy detection in dairy cattle

  • Lim, Hyun-Joo;Kim, Hyun Jong;Lee, Ji Hwan;Lim, Dong Hyun;Son, Jun Kyu;Kim, Eun-Tae;Jang, Gulwon;Kim, Dong-Hyeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.35-44
    • /
    • 2021
  • A pregnancy diagnosis is an important standard for control of livestock's reproduction in paricular dairy cattle. High reproductive performance in dairy animals is a essential condition to realize of high life-time production. Pregnancy diagnosis is crucial to shortening the calving interval by enabling the farmer to identify open animals so as to treat or re-breed them at the earliest opportunity. MicroRNAs are short RNA molecules which are critically involved in regulating gene expression during both health and disease. This study is sought to establish the feasible of circulating miRNAs as biomarkers of early pregnancy in cattle. We applied Illumina small-RNA sequencing to profile miRNAs in plasma samples collected from 12 non-pregnant cows ("open" cows: samples were collected before insemination (non-pregnant state) and after pregnancy check at the indicated time points) on weeks 0, 4, 8, 12 and 16. Using small RNA sequencing we identified a total of 115 miRNAs that were differentially expressed weeks 16 relative to non-pregnancy ("open" cows). Weeks 8, 12 and 16 of pregnancy commonly showed a distinct increase in circulating levels of miR-221 and miR-320a. Through genome-wide analyses we have successfully profiled plasma miRNA populations associated with pregnancy in cattle. Their application in the field of reproductive biology has opened up opportunities for research communities to look for pregnancy biomarker molecules in dairy cattle.

Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis

  • Min-Ji Park;Woon-Mok Sohn;Young-An Bae
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.98-116
    • /
    • 2024
  • Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.

Immunological Detection of Garlic Latent Virus (마늘 잠복 바이러스의 면역학적 진단)

  • Choi, Jin-Nam;Song, Jong-Tae;Song, Sang-Ik;Ahn, Ji-Hoon;Choi, Yang-Do;Lee, Jong-Seob
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.49-54
    • /
    • 1995
  • To understand the molecular structure and pathogenesis mechanism of Korean garlic viruses, we have isolated cDNA clones for garlic viruses. The partial nucleotide sequences of 24 cDNA clones were determined and those of five clones containing poly(A) tail were compared with sequences of other plant viruses. One of these clones, V9, has a primary structure similar to the carlavirus group, suggesting that the clone V9 derived from a part of garlic latent virus (GLV). Northern blot analysis with the clone V9 as a probe demonstrated that GLV genome is 8.5 knt long and has a poly(A) tail. The clone V9 encodes coat protein (CP) of 33 kDa and nucleic acid binding protein of 10 kDa in different reading frame. The hexanucleotide motif, 5'-ACCUAA, which is conserved in the 3' noncoding region arid was proposed to be a cis-acting element involved in the production of negative strand genomic RNA was noticed. Complementary sequence to the hexanucleotide motif, 5'-TTAGGT, is also found in the positive strand of V9 RNA. The putative CP gene was cloned into the pRSET-A expression vector and expressed in E. coli BL21. The expressed recombinant V9CP protein was purified by $Ni^{2+}$ NTA affinity chromatography. The anti-V9CP antibody recognizes 34 kDa polypeptide which could be CP of GLV in infected garlic leaf extract. Immunoblot and Northern blot analysis of various cultivars shows wide occurrence of GLV in Korean garlic plants.

  • PDF