• Title/Summary/Keyword: Genome-wide Association Study [GWAS]

Search Result 151, Processing Time 0.023 seconds

Statistical models and computational tools for predicting complex traits and diseases

  • Chung, Wonil
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.36.1-36.11
    • /
    • 2021
  • Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions across a wide range of complex traits and diseases. The recent arrival of large-sample public biobanks enables highly accurate polygenic predictions based on genetic variants across the whole genome. Various statistical methodologies and diverse computational tools have been introduced and developed to computed the polygenic risk score (PRS) more accurately. However, many researchers utilize PRS tools without a thorough understanding of the underlying model and how to specify the parameters for the best performance. It is advantageous to study the statistical models implemented in computational tools for PRS estimation and the formulas of parameters to be specified. Here, we review a variety of recent statistical methodologies and computational tools for PRS computation.

The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study

  • Suwannasing, Rattikan;Duangjinda, Monchai;Boonkum, Wuttigrai;Taharnklaew, Rutjawate;Tuangsithtanon, Komson
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1852-1862
    • /
    • 2018
  • Objective: The purpose of this study was to investigate a single step genome-wide association study (ssGWAS) for identifying genomic regions affecting reproductive traits in Landrace and Large White pigs. Methods: The traits included the number of pigs weaned per sow per year (PWSY), the number of litters per sow per year (LSY), pigs weaned per litters (PWL), born alive per litters (BAL), non-productive day (NPD) and wean to conception interval per litters (W2CL). A total of 321 animals (140 Landrace and 181 Large White pigs) were genotyped with the Illumina Porcine SNP 60k BeadChip, containing 61,177 single nucleotide polymorphisms (SNPs), while multiple traits single-step genomic BLUP method was used to calculate variances of 5 SNP windows for 11,048 Landrace and 13,985 Large White data records. Results: The outcome of ssGWAS on the reproductive traits identified twenty-five and twenty-two SNPs associated with reproductive traits in Landrace and Large White, respectively. Three known genes were identified to be candidate genes in Landrace pigs including retinol binding protein 7, and ubiquitination factor E4B genes for PWL, BAL, W2CL, and PWSY and one gene, solute carrier organic anion transporter family member 6A1, for LSY and NPD. Meanwhile, five genes were identified to be candidate genes in Large White, two of which, aldehyde dehydrogenase 1 family member A3 and leucine rich repeat kinase 1, associated with all of six reproduction traits and three genes; retrotransposon Gag like 4, transient receptor potential cation channel subfamily C member 5, and LHFPL tetraspan subfamily member 1 for five traits except W2CL. Conclusion: The genomic regions identified in this study provided a start-up point for marker assisted selection and estimating genomic breeding values for improving reproductive traits in commercial pig populations.

KAREBrowser: SNP database of Korea Association REsource Project

  • Hong, Chang-Bum;Kim, Young-Jin;Moon, Sang-Hoon;Shin, Young-Ah;Cho, Yoon-Shin;Lee, Jong-Young
    • BMB Reports
    • /
    • v.45 no.1
    • /
    • pp.47-50
    • /
    • 2012
  • The International HapMap Project and the Human Genome Diversity Project (HGDP) provide plentiful resources on human genome information to the public. However, this kind of information is limited because of the small sample size in both databases. A Genome-Wide Association Study has been conducted with 8,842 Korean subjects as a part of the Korea Association Resource (KARE) project. In an effort to build a publicly available browsing system for genome data resulted from large scale KARE GWAS, we developed the KARE browser. This browser provides users with a large amount of single nucleotide polymorphisms (SNPs) information comprising 1.5 million SNPs from population-based cohorts of 8,842 samples. KAREBrowser was based on the generic genome browser (GBrowse), a web-based application tool developed for users to navigate and visualize the genomic features and annotations in an interactive manner. All SNP information and related functions are available at the web site http://ksnp.cdc. go.kr/karebrowser/.

Mechanistic insight into the progressive retinal atrophy disease in dogs via pathway-based genome-wide association analysis

  • Sheet, Sunirmal;Krishnamoorthy, Srikanth;Park, Woncheoul;Lim, Dajeong;Park, Jong-Eun;Ko, Minjeong;Choi, Bong-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.765-776
    • /
    • 2020
  • The retinal degenerative disease, progressive retinal atrophy (PRA) is a major reason of vision impairment in canine population. Canine PRA signifies an inherently dissimilar category of retinal dystrophies which has solid resemblances to human retinis pigmentosa. Even though much is known about the biology of PRA, the knowledge about the intricate connection among genetic loci, genes and pathways associated to this disease in dogs are still remain unknown. Therefore, we have performed a genome wide association study (GWAS) to identify susceptibility single nucleotide polymorphisms (SNPs) of PRA. The GWAS was performed using a case-control based association analysis method on PRA dataset of 129 dogs and 135,553 markers. Further, the gene-set and pathway analysis were conducted in this study. A total of 1,114 markers associations with PRA trait at p < 0.01 were extracted and mapped to 640 unique genes, and then selected significant (p < 0.05) enriched 35 gene ontology (GO) terms and 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways contain these genes. In particular, apoptosis process, homophilic cell adhesion, calcium ion binding, and endoplasmic reticulum GO terms as well as pathways related to focal adhesion, cyclic guanosine monophosphate)-protein kinase G signaling, and axon guidance were more likely associated to the PRA disease in dogs. These data could provide new insight for further research on identification of potential genes and causative pathways for PRA in dogs.

Genome-wide association study on immune-response for improving healthiness in Holstein dairy cattle (Holstein 젖소의 호흡기 질병 백신에 대한 면역반응성과 전장 유전체 연관 분석 연구)

  • Ha, Seungmin;Lee, Donghui;Lee, Sangmyeong;Chae, Jungil;Seo, Kangseok
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.4
    • /
    • pp.217-225
    • /
    • 2019
  • To detect Single nucleotide polymorphisms (SNP) markers associated with Bovine viral diarrhea virus (BVDV) and Bovine respiratory syncytial virus (BRSV) S/P ratio in Korean Holstein dairy cattle, Genome-wide association study (GWAS) was performed using Illumina BovineSNP50 Beadchip. The number of phenotype data and genotype data were 107, and 294. respectively. Phenotype data were collected for four periods (0 week, 1 week, 4 week, 24 week) after having vaccinated (0 week no vaccinated period). A total of 36,257 SNPs was remained after quality control had been done by PLINK. The result of GWAS showed 6 SNP markers (BTB-01704243, BTB-01594395, ARS-BFGL-NGS-118070, ARS-BFGL-NGS-111365, BTA-65410-no-rs, Hapmap38331-BTA-61256) under BVDV and 4 SNP markers (ARS-BFGL-NGS-109861, Hapmap53701-rs29017064, ARS-BFGL-NGS-71055, BTA-11232-no-rs) under BRSV. And also, 10 candidate genes found through 10 SNP markers (TBX18, CEP162, PAFAH1B1, METTL16, BRCA1, RND2, POLK, ENSBTAG00000051724, ADAM18, NRG3).

Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc×Erhualian F2 intercross population

  • Ji, Jiuxiu;Zhou, Lisheng;Guo, Yuanmei;Huang, Lusheng;Ma, Junwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1066-1073
    • /
    • 2017
  • Objective: Growth-related traits are important economic traits in the swine industry. However, the genetic mechanism of growth-related traits is little known. The aim of this study was to screen the candidate genes and molecular markers associated with body dimension and body weight traits in pigs. Methods: A genome-wide association study (GWAS) on body dimension and body weight traits was performed in a White $Duroc{\times}Erhualian$ $F_2$ intercross by the illumina PorcineSNP60K Beadchip. A mixed linear model was used to assess the association between single nucleotide polymorphisms (SNPs) and the phenotypes. Results: In total, 611 and 79 SNPs were identified significantly associated with body dimension traits and body weight respectively. All SNPs but 62 were located into 23 genomic regions (quantitative trait loci, QTLs) on 14 autosomal and X chromosomes in Sus scrofa Build 10.2 assembly. Out of the 23 QTLs with the suggestive significance level ($5{\times}10^{-4}$), three QTLs exceeded the genome-wide significance threshold ($1.15{\times}10^{-6}$). Except the one on Sus scrofa chromosome (SSC) 7 which was reported previously all the QTLs are novel. In addition, we identified 5 promising candidate genes, including cell division cycle 7 for abdominal circumference, pleiomorphic adenoma gene 1 and neuropeptides B/W receptor 1 for both body weight and cannon bone circumference on SSC4, phosphoenolpyruvate carboxykinase 1, and bone morphogenetic protein 7 for hip circumference on SSC17. Conclusion: The results have not only demonstrated a number of potential genes/loci associated with the growth-related traits in pigs, but also laid a foundation for studying the genes' role and further identifying causative variants underlying these loci.

Genome-wide Survey of Copy Number Variants Associated with Blood Pressure and Body Mass Index in a Korean Population

  • Moon, Sang-Hoon;Kim, Young-Jin;Kim, Yun-Kyoung;Kim, Dong-Joon;Lee, Ji-Young;Go, Min-Jin;Shin, Young-Ah;Hong, Chang-Bum;Kim, Bong-Jo
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.152-160
    • /
    • 2011
  • Hypertension is the major factor of most death and high blood pressure (BP) can lead to stroke, myocardial infarction and cardiac failure. Moreover, hypertension is strongly correlated with body mass index (BMI). Although the exact causes of hypertension are still unclear, some of genetic loci were discovered from genome-wide association study (GWAS). Therefore, it is essential to study genetic variation for finding more genetic factor affecting hypertension. The purpose of our study is to conduct a CNV association study for hypertension-related traits, BP and BMI, in Korean individuals. We identified 2,206 CNV regions from 3,274 community-based Korean participants using the Affymetrix Genome-Wide Human SNP Array 6.0 platform and performed a logistic regression analysis of CNVs with two hypertension-related traits, BP and BMI. Moreover, the 4,692 participants in an independent cohort were selected for respective replication analyses. GWAS of CNV identified two loci encompassing previously known hypertension-related genes: LPA (lipoprotein) on 6q26, and JAK2 (Janus kinase 2) on 9p24, with suggestive p-values (0.0334 for LPA and 0.0305 for JAK2 ). These two positive findings, however, were not evaluated in the replication stage. Our result confirmed the conclusion of CNV study from the WTCCC suggesting weak association with common diseases. This is the first study of CNV association study with BP and BMI in Korean population and it provides a state of CNV association study with common human diseases using SNP array.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

Genome-wide association studies on collagen contents trait for meat quality in Hanwoo

  • KyeongHye Won;Dohyun Kim;Inho Hwang;Hak-Kyo Lee;Jae-Don Oh
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.311-323
    • /
    • 2023
  • Beef consumers valued meat quality traits such as texture, tenderness, juiciness, flavor, and meat color that determining consumers' purchasing decision. Most research on meat quality has focused on marbling, a key characteristic related to meat eating quality. However, other important traits such as meat texture, tenderness, and color have not much studied in cattle. Among these traits, meat tenderness and texture of cattle are among the most important factors affecting quality evaluation of consumers. Collagen is the main component of connective tissues.It greatly affects meat tenderness. The objective of this study was to determine significant variants and candidate genes associated with collagen contents trait (total collagen) through genome-wide association studies (GWAS). Phenotypic and genomic data from 135 Hanwoo were used. The BLUPF90 family program and GRAMMAR method for GWAS were applied in this study. A total of 73 potential single nucleotide polymorphisms (SNPs) showed significant associations with collagen content. They were located in or near 108 candidate genes. TMEM135 and ME3 genes were identified to have the most significant SNPs associated with collagen contents trait. Data indicated that these genes were related to collagen. Biological processes and pathways for the prediction of biological functions of candidate genes were confirmed. We found that candidate genes were involved in positive regulation of CREB transcription factor activity and actin cytoskeleton related to tenderness and texture of beef. Three genes (CRTC3, MYO1C and MYLK4) belonging to these biological functions were related to tenderness. These results provide a basis for improving genomic characteristics of Hanwoo for the production of tender beef. Furthermore, they could be used they could be used as an index to select desired traits for consumers.

A Pilot Genome-wide Association Study of Breast Cancer Susceptibility Loci in Indonesia

  • Haryono, Samuel J;Datasena, I Gusti Bagus;Santosa, Wahyu Budi;Mulyarahardja, Raymond;Sari, Kartika
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2231-2235
    • /
    • 2015
  • Genome-wide association studies (GWASs) of the entire genome provide a systematic approach for revealing novel genetic susceptibility loci for breast cancer. However, genetic association studies have hitherto been primarily conducted in women of European ancestry. Therefofre we here performed a pilot GWAS with a single nucleotide polymorphism (SNP) array 5.0 platform from $Affymetrix^{(R)}$ that contains 443,813 SNPs to search for new genetic risk factors in 89 breast cancer cases and 46 healthy women of Indonesian ancestry. The case-control association of the GWAS finding set was evaluated using PLINK. The strengths of allelic and genotypic associations were assessed using logistic regression analysis and reported as odds ratios (ORs) and P values; P values less than $1.00{\times}10^{-8}$ and $5.00{\times}10^{-5}$ were required for significant association and suggestive association, respectively. After analyzing 292,887 SNPs, we recognized 11 chromosome loci that possessed suggestive associations with breast cancer risk. Of these, however, there were only four chromosome loci with identified genes: chromosome 2p.12 with the CTNNA2 gene [Odds ratio (OR)=1.20, 95% confidence interval (CI)=1.13-1.33, $P=1.08{\times}10^{-7}$]; chromosome 18p11.2 with the SOGA2 gene (OR=1.32, 95%CI=1.17-1.44, $P=6.88{\times}10^{-6}$); chromosome 5q14.1 with the SSBP2 gene (OR=1.22, 95%CI=1.11-1.34, $P=4.00{\times}10^{-5}$); and chromosome 9q31.1 with the TEX10 gene (OR=1.24, 95%CI=1.12-1.35, $P=4.68{\times}10^{-5}$). This study identified 11 chromosome loci which exhibited suggestive associations with the risk of breast cancer among Indonesian women.