• 제목/요약/키워드: Genome-wide

검색결과 695건 처리시간 0.03초

T-DNA 돌연변이를 이용한 벼 기능 유전체 연구 (Rice functional genomics using T-DNA mutants)

  • 류학승;류나연;정기홍;안진흥;전종성
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.133-143
    • /
    • 2010
  • Rice (Oryza sativa) is a major cereal crop that has been developed as a monocot model species. In past decades rice researchers have established valuable resources for functional genomics in rice, such as complete genome sequencing, high-density genetic maps, a full length cDNA database, genome-wide transcriptome data, and a large number of mutants. Of these, rice mutant lines are very important to definitively determine functions of genes associated with valuable agronomic traits. In this review we summarize the progress of functional genomics approaches in rice using T-DNA mutants.

Gene expression involved in dark-induced leaf senescence in zoysiagrass (Zoysia japonica)

  • Cheng, Xiaoxia;Dai, Xiaomei;Zeng, Huiming;Li, Yunxia;Tang, Wei;Han, Liebao
    • Plant Biotechnology Reports
    • /
    • 제3권4호
    • /
    • pp.285-292
    • /
    • 2009
  • Zoysiagrass (Zoysia japonica) is one of the important turfgrass species. Extending green period of zoysiagrass via delaying leaf senescence will make this species have more potential in the turfgrass industry. In this study, we found that zoysiagrass seedlings treated with $GA_3$ could delay the leaf senescence induced by darkness. To study expression of genes responsive to staying green in zoysiagrass, suppression subtractive hybridization (SSH) was used to identify differentially expressed genes between non-$non-GA_3-treated$ and $GA_3-treated$ seedlings subjected to darkness. A total of 307 ESTs were generated, of which 226 ESTs clustered into 54 contigs and 81 were singlets. Differentially expressed genes selected by subtractions were classified into six categories according to their putative functions generated by BLAST analysis. Expression of five selected genes, Met, SAM, V-ATPase, Cry (Cryptochrome gene), and An (diphthine synthase gene) were examined by RT-PCR and Real-time PCR. Both RT-PCR and Real-time PCR results demonstrated that the differential expressions of these genes were attributable to delaying senescence by exogenously applied gibberellic acid. This is the first genome-wide study of senescence in a species of turfgrass.

Differentially Expressed Genes in Marine Medaka Fish (Oryzias javanicus) Exposed to Cadmium

  • Woo, Seon-Ock;Son, Sung-Hee;Park, Hong-Seog;Vulpe, Chris D.;Ryu, Jae-Chun;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.293-299
    • /
    • 2008
  • To screen the differentially expressed genes in cadmuim-exposed marine medaka fish (Oryzias javanicus), a candidate marine test fish for ecological toxicity, the differential display polymerase chain reaction (DD-PCR) was carried out, since the genome-wide gene expression data are not available in this fish species yet. A total of 35 clones were isolated from cadmium-exposed fish and their nucleotide sequences were analyzed. The differentially expressed gene candidates were categorized to response to stimulus (3); ion binding (3); DNA binding (1); protein binding (6); carbohydrate binding (1); metabolic process (4); biological regulation (3); cellular process (2); protein synthesis (2); catalytic activity (2); sense of sight (1); immune (1); neurohormone (1); signaling activity (1); electron carrier activity (1) and others (3). For real-time quantitative RT-PCR, we selected catalase, glucose-6-phosphate dehydrogenase, heat shock protein 70, and metallothionein and confirmed that cadmium exposure enhanced induction of these four genes.

Nucleotide and protein researches on anaerobic fungi during four decades

  • Chang, Jongsoo;Park, Hyunjin
    • Journal of Animal Science and Technology
    • /
    • 제62권2호
    • /
    • pp.121-140
    • /
    • 2020
  • Anaerobic fungi habitat in the gastrointestinal tract of foregut fermenters or hindgut fermenters and degrade fibrous plant biomass through the hydrolysis reactions with a wide variety of cellulolytic enzymes and physical penetration through fiber matrix with their rhizoids. To date, seventeen genera have been described in family Neocallimasticaceae, class Neocallimastigomycetes, phylum Neocallimastigomycota and one genus has been described in phylum Neocallimastigomycota. In National Center for Biotechnology Information (NCBI) database (DB), 23,830 nucleotide sequences and 59,512 protein sequences have been deposited and most of them were originated from Piromyces, Neocallimastix and Anaeromyces. Most of protein sequences (44,025) were acquired with PacBio next generation sequencing system. The whole genome sequences of Anaeromyces robustus, Neocallimastix californiae, Pecoramyces ruminantium, Piromyces finnis and Piromyces sp. E2 are available in Joint Genome Institute (JGI) database. According to the results of protein prediction, average Isoelectric points (pIs) were ranged from 5.88 (Anaeromyces) to 6.57 (Piromyces) and average molecular weights were ranged from 38.7 kDa (Orpinomyces) to 56.6 kDa (Piromyces). In Carbohydrate-Active enZYmes (CAZY) database, glycoside hydrolases (36), carbohydrate binding module (11), carbohydrate esterases (8), glycosyltransferase (5) and polysaccharide lyases (3) from anaerobic fungi were registered. During four decades, 1,031 research articles about anaerobic fungi were published and 444 and 719 articles were available in PubMed (PM) and PubMed Central (PMC) DB.

Respiratory Reviews in Asthma 2013

  • Kim, Tae-Hyung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제76권3호
    • /
    • pp.105-113
    • /
    • 2014
  • From January 2012 up until March 2013, many articles with huge clinical importance in asthma were published based on large numbered clinical trials or meta-analysis. The main subjects of these studies were the new therapeutic plan based on the asthma phenotype or efficacy along with the safety issues regarding the current treatment guidelines. For efficacy and safety issues, inhaled corticosteroid tapering strategy or continued long-acting beta agonists use was the major concern. As new therapeutic trials, monoclonal antibodies or macrolide antibiotics based on inflammatory phenotypes have been under investigation, with promising preliminary results. There were other issues on the disease susceptibility or genetic background of asthma, particularly for the "severe asthma" phenotype. In the era of genome and pharmacogenetics, there have been extensive studies to identify susceptible candidate genes based on the results of genome wide association studies (GWAS). However, for severe asthma, which is where most of the mortality or medical costs develop, it is very unclear. Moreover, there have been some efforts to find important genetic information in order to predict the possible disease progression, but with few significant results up until now. In conclusion, there are new on-going aspects in the phenotypic classification of asthma and therapeutic strategy according to the phenotypic variations. With more pharmacogenomic information and clear identification of the "severe asthma" group even before disease progression from GWAS data, more adequate and individualized therapeutic strategy could be realized in the future.

Genetic tests by next-generation sequencing in children with developmental delay and/or intellectual disability

  • Han, Ji Yoon;Lee, In Goo
    • Clinical and Experimental Pediatrics
    • /
    • 제63권6호
    • /
    • pp.195-202
    • /
    • 2020
  • Developments in next-generation sequencing (NGS) techogies have assisted in clarifying the diagnosis and treatment of developmental delay/intellectual disability (DD/ID) via molecular genetic testing. Advances in DNA sequencing technology have not only allowed the evolution of targeted panels but also, and more currently enabled genome-wide analyses to progress from research era to clinical practice. Broad acceptance of accuracy-guided targeted gene panel, whole-exome sequencing (WES), and whole-genome sequencing (WGS) for DD/ID need prospective analyses of the increasing cost-effectiveness versus conventional genetic testing. Choosing the appropriate sequencing method requires individual planning. Data are required to guide best-practice recommendations for genomic testing, regarding various clinical phenotypes in an etiologic approach. Targeted panel testing may be recommended as a firsttier testing approach for children with DD/ID. Family-based trio testing by WES/WGS can be used as a second test for DD/ID in undiagnosed children who previously tested negative on a targeted panel. The role of NGS in molecular diagnostics, treatment, prediction of prognosis will continue to increase further in the coming years. Given the rapid pace of changes in the past 10 years, all medical providers should be aware of the changes in the transformative genetics field.

Allelic Frequencies of 20 Visible Phenotype Variants in the Korean Population

  • Lim, Ji Eun;Oh, Bermseok
    • Genomics & Informatics
    • /
    • 제11권2호
    • /
    • pp.93-96
    • /
    • 2013
  • The prediction of externally visible characteristics from DNA has been studied for forensic genetics over the last few years. Externally visible characteristics include hair, skin, and eye color, height, and facial morphology, which have high heritability. Recent studies using genome-wide association analysis have identified genes and variations that correlate with human visible phenotypes and developed phenotype prediction programs. However, most prediction models were constructed and validated based on genotype and phenotype information on Europeans. Therefore, we need to validate prediction models in diverse ethnic populations. In this study, we selected potentially useful variations for forensic science that are associated with hair and eye color, iris pattern, and facial morphology, based on previous studies, and analyzed their frequencies in 1,920 Koreans. Among 20 single nucleotide polymorphisms (SNPs), 10 SNPs were polymorphic, 6 SNPs were very rare (minor allele frequency < 0.005), and 4 SNPs were monomorphic in the Korean population. Even though the usability of these SNPs should be verified by an association study in Koreans, this study provides 10 potential SNP markers for forensic science for externally visible characteristics in the Korean population.

Recapitulation of Candidate Systemic Lupus Erythematosus-Associated Variants in Koreans

  • Kwon, Ki-Sung;Cho, Hye-Young;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제14권3호
    • /
    • pp.85-89
    • /
    • 2016
  • Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organ systems. Although the etiology of SLE remains unclear, it is widely accepted that genetic factors could be involved in its pathogenesis. A number of genome-wide association studies (GWASs) have identified novel single-nucleotide polymorphisms (SNPs) associated with the risk of SLE in diverse populations. However, not all the SNP candidates identified from non-Asian populations have been validated in Koreans. In this study, we aimed to replicate the SNPs that were recently discovered in the GWAS; these SNPs have not been validated in Koreans or have only been replicated in Koreans with an insufficient sample size to conclude any association. For this, we selected five SNPs (rs1801274 in FCGR2A and rs2286672 in PLD2, rs887369 in CXorf21, rs9782955 in LYST, and rs3794060 in NADSYN1). Through the replication study with 656 cases and 622 controls, rs1801274 in FCGR2A was found to be significantly associated with SLE in Koreans (odds ratio, 1.26, 95% confidence interval, 1.06 to 1.50; p = 0.01 in allelic model). This association was also significant in two other models (dominant and recessive). The other four SNPs did not show a significant association. Our data support that FCGR polymorphisms play important roles in the susceptibility to SLE in diverse populations, including Koreans.

Interplay between Epigenetics and Genetics in Cancer

  • Choi, Jae Duk;Lee, Jong-Soo
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.164-173
    • /
    • 2013
  • Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hyper-methylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.

Characterization of Quantitative Trait Loci (QTL) for Growth using Genome Scanning in Korean Native Pig

  • Lee, H.K.;Choi, I.S.;Choi, B.H.;Kim, T.H.;Jung, I.J.
    • Reproductive and Developmental Biology
    • /
    • 제28권2호
    • /
    • pp.107-112
    • /
    • 2004
  • Molecular genetic markers were genotyped used to detect chromosomal regions which contain economically important traits such as growth traits in pigs. Three generation resource population was constructed from a cross between the Korean native boars and Landrace sows. A total of 193 F2 animals from intercross of F1 were produced. Phenotypic data on 7 traits, birth weight, body weight at 3, 5, 12, 30 weeks of age, live empty weight were collected for F2 animals. Animals including grandparents (F0), parents (F1), offspring (F2) were genotyped for 194 microsatellite markers covering from chromosome 1 to 18. Quantitative trait locus analyses were performed using interval mapping by regression under line-cross model. To characterize presence of imprinting, genetic full model in which dominance, additive and imprinting effect were included was fitted in this analysis. Significance thresholds were determined by permutation test. Using imprinting full model, four QTL with expression of imprinted effect were detected at 5% chromosome-wide significance level for growth traits on chromosome 1, 5, 7, 13, 14, and 16.