• Title/Summary/Keyword: Genome-wide

Search Result 695, Processing Time 0.029 seconds

Gateway RFP-Fusion Vectors for High Throughput Functional Analysis of Genes

  • Park, Jae-Yong;Hwang, Eun Mi;Park, Nammi;Kim, Eunju;Kim, Dong-Gyu;Kang, Dawon;Han, Jaehee;Choi, Wan Sung;Ryu, Pan-Dong;Hong, Seong-Geun
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.357-362
    • /
    • 2007
  • There is an increasing demand for high throughput (HTP) methods for gene analysis on a genome-wide scale. However, the current repertoire of HTP detection methodologies allows only a limited range of cellular phenotypes to be studied. We have constructed two HTP-optimized expression vectors generated from the red fluorescent reporter protein (RFP) gene. These vectors produce RFP-tagged target proteins in a multiple expression system using gateway cloning technology (GCT). The RFP tag was fused with the cloned genes, thereby allowing us localize the expressed proteins in mammalian cells. The effectiveness of the vectors was evaluated using an HTP-screening system. Sixty representative human C2 domains were tagged with RFP and overexpressed in HiB5 neuronal progenitor cells, and we studied in detail two C2 domains that promoted the neuronal differentiation of HiB5 cells. Our results show that the two vectors developed in this study are useful for functional gene analysis using an HTP-screening system on a genome-wide scale.

Genome-Wide Identification and Classification of the AP2/EREBP Gene Family in the Cucurbitaceae Species

  • Lee, Sang-Choon;Lee, Won-Kyung;Ali, Asjad;Kumar, Manu;Yang, Tae-Jin;Song, Kihwan
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2017
  • AP2/EREBP gene family consists of transcription factor genes with a conserved AP2 DNA-binding domain and is involved in various biological processes. AP2/EREBP gene families were identified through genome-wide searches in five Cucurbitaceae species including cucumber, wild cucumber, melon, watermelon, and bitter gourd, which consisted of more than 100 genes in each of the five species. The gene families were further divided into five groups including four subfamilies (ERF, DREB, AP2 and RAV) and a soloist group. Among the subfamilies, DREB subfamily which is known to be related to abiotic stress response was more analyzed and a total of 25 genes were identified as Cucurbitaceae homologues of Arabidopsis CBF/DREB1 genes which are important for abiotic stress-response and tolerance. In silico expression profiling using RNA-Seq data revealed diverse expression patterns of cucumber AP2/EREBP genes. AP2/EREBP gene families identified in this study will be valuable for understanding the stress response mechanism as well as facilitating molecular breeding in Cucurbitaceae crops.

Genetic architecture and candidate genes detected for chicken internal organ weight with a 600 K single nucleotide polymorphism array

  • Dou, Taocun;Shen, Manman;Ma, Meng;Qu, Liang;Li, Yongfeng;Hu, Yuping;Lu, Jian;Guo, Jun;Wang, Xingguo;Wang, Kehua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.341-349
    • /
    • 2019
  • Objective: Internal organs indirectly affect economic performance and well-being of animals. Study of internal organs during later layer period will allow full utilization of layer hens. Hence, we conducted a genome-wide association study (GWAS) to identify potential quantitative trait loci or genes that potentially contribute to internal organ weight. Methods: A total of 1,512 chickens originating from White Leghorn and Dongxiang Blue-Shelled chickens were genotyped using high-density Affymetrix 600 K single nucleotide polymorphism (SNP) array. We conducted a GWAS, linkage disequilibrium analysis, and heritability estimated based on SNP information by using GEMMA, Haploview and GCTA software. Results: Our results displayed that internal organ weights show moderate to high (0.283 to 0.640) heritability. Variance partitioned across chromosomes and chromosome lengths had a linear relationship for liver weight and gizzard weight ($R^2=0.493$, 0.753). A total of 23 highly significant SNPs that associated with all internal organ weights were mainly located on Gallus gallus autosome (GGA) 1 and GGA4. Six SNPs on GGA2 affected heart weight. After the final analysis, five top SNPs were in or near genes 5-Hydroxytryptamine receptor 2A, general transcription factor IIF polypeptide 2, WD repeat and FYVE domain containing 2, non-SMC condensin I complex subunit G, and sonic hedgehog, which were considered as candidate genes having a pervasive role in internal organ weights. Conclusion: Our findings provide an understanding of the underlying genetic architecture of internal organs and are beneficial in the selection of chickens.

Genome-Wide Transcriptomic Analysis of n-Caproic Acid Production in Ruminococcaceae Bacterium CPB6 with Lactate Supplementation

  • Lu, Shaowen;Jin, Hong;Wang, Yi;Tao, Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1533-1544
    • /
    • 2021
  • n-Caproic acid (CA) is gaining increased attention due to its high value as a chemical feedstock. Ruminococcaceae bacterium strain CPB6 is an anaerobic mesophilic bacterium that is highly prolific in its ability to perform chain elongation of lactate to CA. However, little is known about the genome-wide transcriptional analysis of strain CPB6 for CA production triggered by the supplementation of exogenous lactate. In this study, cultivation of strain CPB6 was carried out in the absence and presence of lactate. Transcriptional profiles were analyzed using RNA-seq, and differentially expressed genes (DEGs) between the lactate-supplemented cells and control cells without lactate were analyzed. The results showed that lactate supplementation led to earlier CA p,roduction, and higher final CA titer and productivity. 295 genes were substrate and/or growth dependent, and these genes cover crucial functional categories. Specifically, 5 genes responsible for the reverse β-oxidation pathway, 11 genes encoding ATP-binding cassette (ABC) transporters, 6 genes encoding substrate-binding protein (SBP), and 4 genes encoding phosphotransferase system (PTS) transporters were strikingly upregulated in response to the addition of lactate. These genes would be candidates for future studies aiming at understanding the regulatory mechanism of lactate conversion into CA, as well as for the improvement of CA production in strain CPB6. The findings presented herein reveal unique insights into the biomolecular effect of lactate on CA production at the transcriptional level.

Age Prediction based on the Transcriptome of Human Dermal Fibroblasts through Interval Selection (피부섬유모세포 전사체 정보를 활용한 구간 선택 기반 연령 예측)

  • Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.494-499
    • /
    • 2022
  • It is reported that genome-wide RNA-seq profiles has potential as biomarkers of aging. A number of researches achieved promising prediction performance based on gene expression profiles. We develop an age prediction method based on the transcriptome of human dermal fibroblasts by selecting a proper age interval. The proposed method executes multiple rules in a sequential manner and a rule utilizes a classifier and a regression model to determine whether a given test sample belongs to the target age interval of the rule. If a given test sample satisfies the selection condition of a rule, age is predicted from the associated target age interval. Our method predicts age to a mean absolute error of 5.7 years. Our method outperforms prior best performance of mean absolute error of 7.7 years achieved by an ensemble based prediction method. We observe that it is possible to predict age based on genome-wide RNA-seq profiles but prediction performance is not stable but varying with age.

Genome-wide identification of long noncoding RNA genes and their potential association with mammary gland development in water buffalo

  • Jin, Yuhan;Ouyang, Yina;Fan, Xinyang;Huang, Jing;Guo, Wenbo;Miao, Yongwang
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1656-1665
    • /
    • 2022
  • Objective: Water buffalo, an important domestic animal in tropical and subtropical regions, play an important role in agricultural economy. It is an important source for milk, meat, horns, skin, and draft power, especially its rich milk that is the great source of cream, butter, yogurt, and many cheeses. In recent years, long noncoding RNAs (lncRNAs) have been reported to play pivotal roles in many biological processes. Previous studies for the mammary gland development of water buffalo mainly focus on protein coding genes. However, lncRNAs of water buffalo remain poorly understood, and the regulation relationship between mammary gland development/milk production traits and lncRNA expression is also unclear. Methods: Here, we sequenced 22 samples of the milk somatic cells from three lactation stages and integrated the current annotation and identified 7,962 lncRNA genes. Results: By comparing the lncRNA genes of the water buffalo in the early, peak, and late different lactation stages, we found that lncRNA gene lnc-bbug14207 displayed significantly different expression between early and late lactation stages. And lnc-bbug14207 may regulate neighboring milk fat globule-EGF factor 8 (MFG-E8) and hyaluronan and proteoglycan link protein 3 (HAPLN3) protein coding genes, which are vital for mammary gland development. Conclusion: This study provides the first genome-wide identification of water buffalo lncRNAs and unveils the potential lncRNAs that impact mammary gland development.

Comparison of Polygenic Risk for Schizophrenia between European and Korean Populations (유럽인 자료로 산출된 조현병 다유전자 위험도 점수의 한국인 조현병 환자를 대상으로 한 적용)

  • Lee, Jinyoung;Lee, Dongbin;Cho, Eun Young;Baek, Ji Hyun;Hong, Kyung Sue
    • Korean Journal of Schizophrenia Research
    • /
    • v.23 no.2
    • /
    • pp.65-70
    • /
    • 2020
  • Objectives: This study aimed to explore whether common genetic variants that confer the risk of schizophrenia have similar effects between Korean and European ancestries using the polygenic risk score (PRS) analysis. Methods: Study subjects included 713 Korean patients with schizophrenia and 497 healthy controls. The Korea Biobank array was used for genotyping. Summary statistics of the most recent genome-wide association study (GWAS) of the European population were used as baseline data to calculate PRS. Logistic regression was conducted to determine the association between calculated PRS of European patients with schizophrenia and clinical diagnosis of schizophrenia in the Korean population. Results: Schizophrenia PRS was significantly higher in patients with schizophrenia than in healthy controls. The PRS at the p-value threshold of 0.5 best explained the variance of schizophrenia (R2=0.028, p=4.4×10-6). The association was significant after adjusting for age and sex (odds ratio=1.34, 95% confidence interval=1.19-1.51, p=1.1×10-6). The pattern of the association remained similar across different p-value thresholds (0.01-1). Conclusion: Schizophrenia PRS calculated using the European GWAS data showed a significant association with the clinical diagnosis of schizophrenia in the Korean population. Results suggest overlapping genetic risk variants between the two populations.

Candidate Gene Analysis to Rice Bacterial Leaf Blight Resistance of Korean Races of Xoo (Xanthomonas oryzae) in Rice Genetic Resources by GWAS Analysis

  • Myung Chul Lee;Yu-Mi Choi;Myoung-Jae Shin;Hyemyeong Yoon;Sukyeung Lee;Kebede Taye Desta
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.49-49
    • /
    • 2020
  • Bacterial leaf blight (BLB), caused by X. oryzae pv. oryzae(Xoo), is one of the most destructive diseases of rice due to its high epidemic potential. Understanding BLB resistance at a genetic level is important to further improve the rice breeding that provides one of the best approaches to control BLB disease. In the present investigation, a total of 10,000 accessions of rice germplasm were tested to resistance degree of four Korean isolated races (K1, K2, K3 and K3a) of Xoo by bioassay and a diverse 268 accessions was selected to the genome-wide association study (GWAS) using high quality 34,724 SNPs to identify the associated with resistance loci. LOC_Os04g53160 of chromosome 4 was significantly associated with K1 race resistant. LOC_Os11g46230 and LOC_Os11g47150 of chromosome 11 were highly associated with K2 and K3 races as 23.7 and 27.4 of -log(P) value, but K3a resistant loci was weakly associated at LOC_Os03g55270 of chromosome 3. The results of the GWAS validate known gene of BLB resistant and identified novel loci of R genes that provide useful targets for further investigation to help the breeding system and identified gene and QTL provide valuable sources for further functional characterization.

  • PDF

Current status and prospects of molecular marker development for systematic breeding program in citrus (감귤 분자육종을 위한 분자표지 개발 현황 및 전망)

  • Kim, Ho Bang;Kim, Jae Joon;Oh, Chang Jae;Yun, Su-Hyun;Song, Kwan Jeong
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.261-271
    • /
    • 2016
  • Citrus is an economically important fruit crop widely growing worldwide. However, citrus production largely depends on natural hybrid selection and bud sport mutation. Unique botanical features including long juvenility, polyembryony, and QTL that controls major agronomic traits can hinder the development of superior variety by conventional breeding. Diverse factors including drastic changes of citrus production environment due to global warming and changes in market trends require systematic molecular breeding program for early selection of elite candidates with target traits, sustainable production of high quality fruits, cultivar diversification, and cost-effective breeding. Since the construction of the first genetic linkage map using isozymes, citrus scientists have constructed linkage maps using various DNA-based markers and developed molecular markers related to biotic and abiotic stresses, polyembryony, fruit coloration, seedlessness, male sterility, acidless, morphology, fruit quality, seed number, yield, early fruit setting traits, and QTL mapping on genetic maps. Genes closely related to CTV resistance and flesh color have been cloned. SSR markers for identifying zygotic and nucellar individuals will contribute to cost-effective breeding. The two high quality citrus reference genomes recently released are being efficiently used for genomics-based molecular breeding such as construction of reference linkage/physical maps and comparative genome mapping. In the near future, the development of DNA molecular markers tightly linked to various agronomic traits and the cloning of useful and/or variant genes will be accelerated through comparative genome analysis using citrus core collection and genome-wide approaches such as genotyping-by-sequencing and genome wide association study.

Deducing Isoform Abundance from Exon Junction Microarray

  • Kim Po-Ra;Oh S.-June;Lee Sang-Hyuk
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • Alternative splicing (AS) is an important mechanism of producing transcriptome diversity and microarray techniques are being used increasingly to monitor the splice variants. There exist three types of microarrays interrogating AS events-junction, exon, and tiling arrays. Junction probes have the advantage of monitoring the splice site directly. Johnson et al., performed a genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays (Science 302:2141-2144, 2003), which monitored splicing at every known exon-exon junctions for more than 10,000 multi-exon human genes in 52 tissues and cell lines. Here, we describe an algorithm to deduce the relative concentration of isoforms from the junction array data. Non-negative Matrix Factorization (NMF) is applied to obtain the transcript structure inferred from the expression data. Then we choose the transcript models consistent with the ECgene model of alternative splicing which is based on mRNA and EST alignment. The probe-transcript matrix is constructed using the NMF-consistent ECgene transcripts, and the isoform abundance is deduced from the non-negative least squares (NNLS) fitting of experimental data. Our method can be easily extended to other types of microarrays with exon or junction probes.