• 제목/요약/키워드: Genome wide

검색결과 697건 처리시간 0.031초

Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages

  • Meyer J. Friedman;Haram Lee;June-Yong Lee;Soohwan Oh
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.5.1-5.28
    • /
    • 2023
  • Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and threedimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.

Identification of LEF1 as a Susceptibility Locus for Kawasaki Disease in Patients Younger than 6 Months of Age

  • Kim, Hea-Ji;Yun, Sin Weon;Yu, Jeong Jin;Yoon, Kyung Lim;Lee, Kyung-Yil;Kil, Hong-Ryang;Kim, Gi Beom;Han, Myung-Ki;Song, Min Seob;Lee, Hyoung Doo;Ha, Kee Soo;Sohn, Sejung;Ebata, Ryota;Hamada, Hiromichi;Suzuki, Hiroyuki;Kamatani, Yoichiro;Kubo, Michiaki;Ito, Kaoru;Onouchi, Yoshihiro;Hong, Young Mi;Jang, Gi Young;Lee, Jong-Keuk;The Korean Kawasaki Disease Genetics Consortium
    • Genomics & Informatics
    • /
    • 제16권2호
    • /
    • pp.36-41
    • /
    • 2018
  • Kawasaki disease (KD) is an acute febrile vasculitis predominately affecting infants and children. The dominant incidence age of KD is from 6 months to 5 years of age, and the incidence is unusual in those younger than 6 months and older than 5 years of age. We tried to identify genetic variants specifically associated with KD in patients younger than 6 months or older than 5 years of age. We performed an age-stratified genome-wide association study using the Illumina HumanOmni1-Quad BeadChip data (296 cases vs. 1,000 controls) and a replication study (1,360 cases vs. 3,553 controls) in the Korean population. Among 26 candidate single nucleotide polymorphisms (SNPs) tested in replication study, only a rare nonsynonymous SNP (rs4365796: c.1106C>T, p.Thr369Met) in the lymphoid enhancer binding factor 1 (LEF1) gene was very significantly associated with KD in patients younger than 6 months of age (odds ratio [OR], 3.07; $p_{combined}=1.10{\times}10^{-5}$), whereas no association of the same SNP was observed in any other age group of KD patients. The same SNP (rs4365796) in the LEF1 gene showed the same direction of risk effect in Japanese KD patients younger than 6 months of age, although the effect was not statistically significant (OR, 1.42; p = 0.397). This result indicates that the LEF1 gene may play an important role as a susceptibility gene specifically affecting KD patients younger than 6 months of age.

Genome-Wide Analysis of DNA Methylation before- and after Exercise in the Thoroughbred Horse with MeDIP-Seq

  • Gim, Jeong-An;Hong, Chang Pyo;Kim, Dae-Soo;Moon, Jae-Woo;Choi, Yuri;Eo, Jungwoo;Kwon, Yun-Jeong;Lee, Ja-Rang;Jung, Yi-Deun;Bae, Jin-Han;Choi, Bong-Hwan;Ko, Junsu;Song, Sanghoon;Ahn, Kung;Ha, Hong-Seok;Yang, Young Mok;Lee, Hak-Kyo;Park, Kyung-Do;Do, Kyoung-Tag;Han, Kyudong;Yi, Joo Mi;Cha, Hee-Jae;Ayarpadikannan, Selvam;Cho, Byung-Wook;Bhak, Jong;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제38권3호
    • /
    • pp.210-220
    • /
    • 2015
  • Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethy-lated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.

Marker Assisted Selection-Applications and Evaluation for Commercial Poultry Breeding

  • Sodhi, Simrinder Singh;Jeong, Dong Kee;Sharma, Neelesh;Lee, Jun Heon;Kim, Jeong Hyun;Kim, Sung Hoon;Kim, Sung Woo;Oh, Sung Jong
    • 한국가금학회지
    • /
    • 제40권3호
    • /
    • pp.223-234
    • /
    • 2013
  • Poultry industry is abounding day by day as it engrosses less cost of investment per bird as compared to large animals. Poultry have the most copious genomic tool box amongst domestic animals for the detection of quantitative trait loci (QTL) and marker assisted selection (MAS). Use of multiple markers and least square techniques for mapping of QTL affecting quality and production traits in poultry is in vogue. Examples of genetic tests that are available to or used in industry programs are documented and classified into causative mutations (direct markers), linked markers in population-wide linkage disequilibrium (LD) with the QTL (LD markers), and linked markers in population wide equilibrium with the QTL (LE markers). Development of genome-wide SNP assays, role of 42 K, 60 K (Illumina) and 600 K (Affymetrix$^{(R)}$ Axim$^{(R)}$) SNP chip with next generation sequencing for identification of single nucleotide polymorphism (SNP) has been documented. Hybridization based, PCR based, DNA chip and sequencing based are the major segments of DNA markers which help in conducting of MAS in poultry. Economic index-marker assisted selection (EI-MAS) provides platform for simultaneous selection for production traits while giving due weightage to their marginal economic values by calculating predicted breeding value, using information on DNA markers which are normally associated with relevant QTL. Understanding of linkage equilibrium, linkage dis-equilibrium, relation between the markers and gene of interest are quite important for success of MAS. This kind of selection is the most useful tool in enhancing disease resistance by identifying candidate genes to improve the immune response. The application of marker assisted selection in selection procedures would help in improvement of economic traits in poultry.

Oxidative Stress Induced Damage to Paternal Genome and Impact of Meditation and Yoga - Can it Reduce Incidence of Childhood Cancer?

  • Dada, Rima;Kumar, Shiv Basant;Chawla, Bhavna;Bisht, Shilpa;Khan, Saima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권9호
    • /
    • pp.4517-4525
    • /
    • 2016
  • Background: Sperm DNA damage is underlying aetiology of poor implantation and pregnancy rates but also affects health of offspring and may also result in denovo mutations in germ line and post fertilization. This may result in complex diseases, polygenic disorders and childhood cancers. Childhood cancer like retinoblastoma (RB) is more prevalent in developing countries and the incidence of RB has increased more than three fold in India in the last decade. Recent studies have documented increased incidence of cancers in children born to fathers who consume alcohol in excess and tobacco or who were conceived by assisted conception. The aetiology of childhood cancer and increased disease burden in these children is lin ked to oxidative stress (OS) and oxidative DNA damage( ODD) in sperm of their fathers. Though several antioxidants are in use to combat oxidative stress, the effect of majority of these formulations on DNA is not known. Yoga and meditation cause significant decline in OS and ODD and aid in regulating OS levels such that reactive oxygen speues meditated signal transduction, gene expression and several other physiological functions are not disrupted. Thus, this study aimed to analyze sperm ODD as a possible etiological factor in childhood cancer and role of simple life style interventions like yoga and meditation in significantly decreasing seminal oxidative stress and oxidative DNA damage and thereby decreasing incidence of childhood cancers. Materials and Methods: A total of 131 fathers of children with RB (non-familial sporadic heritable) and 50 controls (fathers of healthy children) were recruited at a tertiary center in India. Sperm parameters as per WHO 2010 guidelines and reactive oxygen species (ROS), DNA fragmentation index (DFI), 8-hydroxy-2'-deoxy guanosine (8-OHdG) and telomere length were estimated at day 0, and after 3 and 6 months of intervention. We also examined the compliance with yoga and meditation practice and smoking status at each follow-up. Results: The seminal mean ROS levels (p<0.05), sperm DFI (p<0.001), 8-OHdG (p<0.01) levels were significantly higher in fathers of children with RB, as compared to controls and the relative mean telomere length in the sperm was shorter. Levels of ROS were significantly reduced in tobacco users (p<0.05) as well as in alcoholics (p<0.05) after intervention. DFI reduced significantly (p<0.05) after 6 months of yoga and meditation practice in all groups. The levels of oxidative DNA damage marker 8-OHdG were reduced significantly after 3 months (p<0.05) and 6 months (p<0.05) of practice. Conclusions: Our results suggest that OS and ODD DNA may contribute to the development of childhood cancer. This may be due to accumulation of oxidized mutagenic base 8OHdG, and elevated MDA levels which results in MDA dimers which are also mutagenic, aberrant methylation pattern, altered gene expression which affect cell proliferation and survival through activation of transcription factors. Increased mt DNA mutations and aberrant repair of mt and nuclear DNA due to highly truncatred DNA repair mechanisms all contribute to sperm genome hypermutability and persistant oxidative DNA damage. Oxidative stress is also associated with genome wide hypomethylation, telomere shortening and mitochondrial dysfunction leading to genome hypermutability and instability. To the best of our knowledge, this is the first study to report decline in OS and ODD and improvement in sperm DNA integrity following adoption of meditation and yoga based life style modification.This may reduce disease burden in next generation and reduce incidence of childhood cancers.

배나무(Pyrus spp.) 유전체 연구 현황 (Researches of pear tree (Pyrus spp.) genomics)

  • 오영재;신현석;김금선;한현대;김윤경;김대일
    • Journal of Plant Biotechnology
    • /
    • 제42권4호
    • /
    • pp.290-297
    • /
    • 2015
  • 배나무는 원산지와 분화방향에 따라 유럽, 미국, 호주 등에서 주로 재배되는 서양배와 중국, 일본, 한국 등 동남 아시아 지역을 중심으로 분포 및 재배되고 있는 동양배로 구분된다. 17개의 기본염색체를 가진 배나무는 대부분 이배성(2n=2x=34)이며, 단일 S 유전자좌에 의해 조절되는 자가불화합성과 과수 작물의 주요 특징인 유년성으로 인해 유전 연구 및 정밀한 품종 육성에 큰 제한을 받고 있다. 배나무속 식물의 유전연구는 분자생물학 관련 기술의 발달로 다양한 형태의 분자 표지의 개발이 이루어짐과 동시에 유연관계분석, 유전자지도작성, QTL 분석과 같은 다양한 유전연구에 활발히 이용되었다. 또한 배나무의 유전자지도는 병 저항성이나 다양한 유용형질과 연관된 QTL 확인을 위한 연구로 이어지고 있다. 대량 병렬 반응 및 다중처리를 토대로 획기적인 염기서열 분석 비용의 감소를 이뤄낸 NGS 기술은 대용량, 고효율, 저비용으로 식물 유전체 해독을 가능하게 하여, 중국배 'Danshansuli'와 유럽배 'Bartlett'에서 유전체 분석이 완료되었다. 최근 국내에서는 황금배, 청실리 및 미니배의 resequencing 및 GBS를 통한 SNP 탐색 등의 연구를 통해 화기, 숙기 당도 등 농업적으로 유용형질에 대한 게놈전체 연관분석을 수행하고 있다.

Selection signature reveals genes associated with susceptibility loci affecting respiratory disease due to pleiotropic and hitchhiking effect in Chinese indigenous pigs

  • Xu, Zhong;Sun, Hao;Zhang, Zhe;Zhang, Cheng-Yue;Zhao, Qing-bo;Xiao, Qian;Olasege, Babatunde Shittu;Ma, Pei-Pei;Zhang, Xiang-Zhe;Wang, Qi-Shan;Pan, Yu-Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권2호
    • /
    • pp.187-196
    • /
    • 2020
  • Objective: Porcine respiratory disease is one of the most important health problems causing significant economic losses. To understand the genetic basis for susceptibility to swine enzootic pneumonia (EP) in pigs, we detected 102,809 single nucleotide polymorphisms in a total of 249 individuals based on genome-wide sequencing data. Methods: Genome comparison of susceptibility to swine EP in three pig breeds (Jinhua, Erhualian, and Meishan) with two western lines that are considered more resistant (Duroc and Landrace) using cross-population extended haplotype homozygosity and F-statistic (FST) statistical approaches identified 691 positively selected genes. Based on quantitative trait loci, gene ontology terms and literature search, we selected 14 candidate genes that have convincible biological functions associated with swine EP or human asthma. Results: Most of these genes were tested by several methods including transcription analysis and candidate genes association study. Among these genes: cytochrome P450 1A1 and catenin beta 1 (CTNNB1) are involved in fertility; transforming growth factor beta receptor 3 plays a role in meat quality traits; Wnt family member 2, CTNNB1 and transcription factor 7 take part in adipogenesis and fat deposition simultaneously; plasminogen activator, urokinase receptor (completely linked to AXL receptor tyrosine kinase, r2 = 1) plays an essential role in the successful ovulation of matured oocytes in pigs; colipase like 2 (strongly linked to SAM pointed domain containing ETS transcription factor, r2 = 0.848) is involved in male fertility. Conclusion: These adverse genes susceptible to swine EP may be selected while selecting for economic traits (especially reproduction traits) due to pleiotropic and hitchhiking effect of linked genes. Our study provided a completely new point of view to understand the genetic basis for susceptibility or resistance to swine EP in pigs thereby, provides insight for designing sustainable breed selection programs. Finally, the candidate genes are crucial due to their potential roles in respiratory diseases in a large number of species, including human.

마늘 잠복 바이러스의 면역학적 진단 (Immunological Detection of Garlic Latent Virus)

  • 최진남;송종태;송상익;안지훈;최양도;이종섭
    • Applied Biological Chemistry
    • /
    • 제38권1호
    • /
    • pp.49-54
    • /
    • 1995
  • 한국 마늘에 감염된 바이러스의 종류와 병 발생 메카니즘을 구명하기 위하여, 마늘 바이러스 cDNA clone들을 분리하였다. 24개 cDNA clone들의 부분적인 염기 서열을 결정하였고, 이 중 poly(A) tail을 가진 5개 clone들의 염기 서열을 결정하였다. 이를 이미 알려진 다른 식물 바이러스와 비교했을 때, clone V9은 일차구조가 carlavirus와 유사성을 보이므로 GLV cDNA clone으로 여겨진다. Northern blot 결과로부터 GLV genome의 크기는 8.5 knt이고, poly(A) tail을 가지고 있다는 것을 알 수 있었다. clone V9의 3' 말단부분에는 바이러스 복제과정에서 cis-acting element로 작용한다고 여겨지는 hexanucleotide motif(5'-ACCUAA)가 존재한다. 또한 carlavirus의 껍질 단백질 subgenomic RNA의 5' 말단에 보존되어 있는 5'-TTAGGT도 나타난다. 이들은 모두 carlavirus의 특징들이다. 껍질 단백질 유전자를 pRSET-A 발현 벡터에 재조합하고, E. coli BL21에서 발현시켰다. 발현된 껍질 단백질을 $Ni^{2+}$ NTA affinity chromatography에 의해 정제하였다. 껍질 단백질을 토끼에 주사하여 항체를 만든 후, immunoblot을 한 결과 GLV 껍질 단백질에 해당하는 24 kDa polypeptide가 인지되었다. 또한 다양한 마늘 품종에 대해서 immunoblot을 한 결과, GLV 껍질 단백질의 크기와 GLV의 감염정도가 마늘 품종에 따라서 차이가 있다는 것을 알 수 있었다.

  • PDF

설편평상피암에 있어서의 고밀도 SNP Genotyping 어레이를 이용한 전게놈북제수와 헤테로접합성 소실의 분석 (Analysis of copy number abnormality (CNA) and loss of heterozygosity (LOH) in the whole genome using single nucleotide polymorphism (SNP) genotyping arrays in tongue squamous cell carcinoma)

  • 쿠로이와 츠카사;야마모토 노부하루;온다 타케시;베스요 히로키;야쿠시지 타카시;카타쿠라 아키라;타카노 노부오;시바하라 타카히코
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권6호
    • /
    • pp.550-555
    • /
    • 2011
  • Chromosomal loss of heterozygosity (LOH) is a common mechanism for the inactivation of tumor suppressor genes in human epithelial cancers. LOH patterns can be generated through allelotyping using polymorphic microsatellite markers; however, owing to the limited number of available microsatellite markers and the requirement for large amounts of DNA, only a modest number of microsatellite markers can be screened. Hybridization to single nucleotide polymorphism (SNP) arrays using Affymetarix GeneChip Mapping 10 K 2.0 Array is an efficient method to detect genome-wide cancer LOH. We determined the presence of LOH in oral SCCs using these arrays. DNA was extracted from tissue samples obtained from 10 patients with tongue SCCs who presented at the Hospital of Tokyo Dental College. We examined the presence of LOH in 3 of the 10 patients using these arrays. At the locus that had LOH, we examined the presence of LOH using microsatellite markers. LOH analysis using Affymetarix GeneChip Mapping 10K Array showed LOH in all patients at the 1q31.1. The LOH regions were detected and demarcated by the copy number 1 with the series of three SNP probes. LOH analysis of 1q31.1 using microsatellite markers (D1S1189, D1S2151, D1S2595) showed LOH in all 10 patients (100). Our data may suggest that a putative tumor suppressor gene is located at the 1q31.1 region. Inactivation of such a gene may play a role in tongue tumorigenesis.

Chromosome 22 LD Map Comparison between Korean and Other Populations

  • Lee, Jong-Eun;Jang, Hye-Yoon;Kim, Sook;Yoo, Yeon-Kyeong;Hwang, Jung-Joo;Jun, Hyo-Jung;Lee, Kyu-Sang;Son, Ok-Kyung;Yang, Jun-Mo;Ahn, Kwang-Sung;Kim, Eug-Ene;Lee, Hye-Won;Song, Kyu-Young;Kim, Hie-Lim;Lee, Seong-Gene;Yoon, Yong-Sook;Kimm, Ku-Chan;Han, Bok-Ghee;Oh, Berm-Seok;Kim, Chang-Bae;Jin, Hoon;Choi, Kyoung-O.;Kang, Hyo-Jin;Kim, Young-J.
    • Genomics & Informatics
    • /
    • 제6권1호
    • /
    • pp.18-28
    • /
    • 2008
  • Single nucleotide polymorphisms (SNPs) are the most abundant forms of human genetic variations and resources for mapping complex genetic traits and disease association studies. We have constructed a linkage disequilibrium (LD) map of chromosome 22 in Korean samples and compared it with those of other populations, including Yorubans in Ibadan, Nigeria (YRI), Centre d'Etude du Polymorphisme Humain (CEPH) reference families (CEU), Japanese in Tokyo (JPT) and Han Chinese in Beijing (CHB) in the HapMap database. We genotyped 4681 of 111,448 publicly available SNPs in 90 unrelated Koreans. Among genotyped SNPs, 4167 were polymorphic. Three hundred and five LD blocks were constructed to make up 18.6% (6.4 of 34.5 Mb) of chromosome 22 with 757 tagSNPs and 815 haplotypes (frequency $\geq$ 5.0%). Of 3430 common SNPs genotyped in all five populations, 514 were monomorphic in Koreans. The CHB + JPT samples have more than a 72% overlap with the monomorphic SNPs in Koreans, while the CEU + YRI samples have less than a 38% overlap. The patterns of hot spots and LD blocks were dispersed throughout chromosome 22, with some common blocks among populations, highly concordant between the three Asian samples. Analysis of the distribution of chimpanzee-derived allele frequency (DAF), a measure of genetic differentiation, Fst levels, and allele frequency difference (AFD) among Koreans and the HapMap samples showed a strong correlation between the Asians, while the CEU and YRI samples showed a very weak correlation with Korean samples. Relative distance as a quantitative measurement based upon DAF, Fst, and AFD indicated that all three Asian samples are very proximate, while CEU and YRI are significantly remote from the Asian samples. Comparative genome-wide LD studies provide useful information on the association studies of complex diseases.