• Title/Summary/Keyword: Genome wide

Search Result 704, Processing Time 0.031 seconds

Proteomic Studies in Plants

  • Park, Ohk-Mae K.
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.133-138
    • /
    • 2004
  • Proteomics is a leading technology for the high-throughput analysis of proteins on a genome-wide scale. With the completion of genome sequencing projects and the development of analytical methods for protein characterization, proteomics has become a major field of functional genomics. The initial objective of proteomics was the large-scale identification of all protein species in a cell or tissue. The applications are currently being extended to analyze various functional aspects of proteins such as post-translational modifications, protein-protein interactions, activities and structures. Whereas the proteomics research is quite advanced in animals and yeast as well as Escherichia coli, plant proteomics is only at the initial phase. Major studies of plant proteomics have been reported on subcellular proteomes and protein complexes (e.g. proteins in the plasma membranes, chloroplasts, mitochondria and nuclei). Here several plant proteomics studies will be presented, followed by a recent work using multidimensional protein identification technology (MudPIT).

Genomic approaches for the understanding of aging in model organisms

  • Park, Sang-Kyu
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.291-297
    • /
    • 2011
  • Aging is one of the most complicated biological processes in all species. A number of different model organisms from yeast to monkeys have been studied to understand the aging process. Until recently, many different age-related genes and age-regulating cellular pathways, such as insulin/IGF-1-like signal, mitochondrial dysfunction, Sir2 pathway, have been identified through classical genetic studies. Parallel to genetic approaches, genome-wide approaches have provided valuable insights for the understanding of molecular mechanisms occurring during aging. Gene expression profiling analysis can measure the transcriptional alteration of multiple genes in a genome simultaneously and is widely used to elucidate the mechanisms of complex biological pathways. Here, current global gene expression profiling studies on normal aging and age-related genetic/environmental interventions in widely-used model organisms are briefly reviewed.

Screening of Genes Related to Methylglyoxal Susceptibility

  • Kim, In-Sook;Kim, Joon-Ho;Min, Bum-Chan;Lee, Chang-Han;Park, Chan-Kyu
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.339-343
    • /
    • 2007
  • Methylglyoxal (MG) is a reactive metabolite known to accumulate in certain physiological conditions. We attempted to isolate genes associated with this metabolite by genome-wide mutagenesis with TnphoA derivative. After screening on methylglyoxal-containing plate, we obtained insertions in three different genes, ydbD, yjjQ, and yqiI, which gave rise to reproducible MG-sensitive phenotypes in glyoxalase-deficient strain. In addition to its MG sensitivity, the insertion in yqiI exhibited an impaired motility resulting from a reduced flagellar expression.

Functional annotation of lung cancer-associated genetic variants by cell type-specific epigenome and long-range chromatin interactome

  • Lee, Andrew J.;Jung, Inkyung
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.3.1-3.12
    • /
    • 2021
  • Functional interpretation of noncoding genetic variants associated with complex human diseases and traits remains a challenge. In an effort to enhance our understanding of common germline variants associated with lung cancer, we categorize regulatory elements based on eight major cell types of human lung tissue. Our results show that 21.68% of lung cancer-associated risk variants are linked to noncoding regulatory elements, nearly half of which are cell type-specific. Integrative analysis of high-resolution long-range chromatin interactome maps and single-cell RNA-sequencing data of lung tumors uncovers number of putative target genes of these variants and functionally relevant cell types, which display a potential biological link to cancer susceptibility. The present study greatly expands the scope of functional annotation of lung cancer-associated genetic risk factors and dictates probable cell types involved in lung carcinogenesis.

BaSDAS: a web-based pooled CRISPR-Cas9 knockout screening data analysis system

  • Park, Young-Kyu;Yoon, Byoung-Ha;Park, Seung-Jin;Kim, Byung Kwon;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.46.1-46.4
    • /
    • 2020
  • We developed the BaSDAS (Barcode-Seq Data Analysis System), a GUI-based pooled knockout screening data analysis system, to facilitate the analysis of pooled knockout screen data easily and effectively by researchers with limited bioinformatics skills. The BaSDAS supports the analysis of various pooled screening libraries, including yeast, human, and mouse libraries, and provides many useful statistical and visualization functions with a user-friendly web interface for convenience. We expect that BaSDAS will be a useful tool for the analysis of genome-wide screening data and will support the development of novel drugs based on functional genomics information.

Multi-block Analysis of Genomic Data Using Generalized Canonical Correlation Analysis

  • Jun, Inyoung;Choi, Wooree;Park, Mira
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.33.1-33.9
    • /
    • 2018
  • Recently, there have been many studies in medicine related to genetic analysis. Many genetic studies have been performed to find genes associated with complex diseases. To find out how genes are related to disease, we need to understand not only the simple relationship of genotypes but also the way they are related to phenotype. Multi-block data, which is a summation form of variable sets, is used for enhancing the analysis of the relationships of different blocks. By identifying relationships through a multi-block data form, we can understand the association between the blocks in comprehending the correlation between them. Several statistical analysis methods have been developed to understand the relationship between multi-block data. In this paper, we will use generalized canonical correlation methodology to analyze multi-block data from the Korean Association Resource project, which has a combination of single nucleotide polymorphism blocks, phenotype blocks, and disease blocks.

OMICS approaches in cardiovascular diseases: a mini review

  • Sohag, Md. Mehadi Hasan;Raqib, Saleh Muhammed;Akhmad, Syaefudin Ali
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.13.1-13.8
    • /
    • 2021
  • Ranked in the topmost position among the deadliest diseases in the world, cardiovascular diseases (CVDs) are a global burden with alterations in heart and blood vessels. Early diagnostics and prognostics could be the best possible solution in CVD management. OMICS (genomics, proteomics, transcriptomics, and metabolomics) approaches could be able to tackle the challenges against CVDs. Genome-wide association studies along with next-generation sequencing with various computational biology tools could lead a new sight in early detection and possible therapeutics of CVDs. Human cardiac proteins are also characterized by mass spectrophotometry which could open the scope of proteomics approaches in CVD. Besides this, regulation of gene expression by transcriptomics approaches exhibits a new insight while metabolomics is the endpoint on the downstream of multi-omics approaches to confront CVDs from the early onset. Although a lot of challenges needed to overcome in CVD management, OMICS approaches are certainly a new prospect.

Associations Between APOE Gene Variants and Metabolite Levels in Hypercholesterolemia: A Metabolite GWAS Study in a Korean Cohort

  • Sangjung Park
    • Biomedical Science Letters
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2024
  • Hypercholesterolemia, a form of hyperlipidemia, is a significant risk factor for cardiovascular diseases, often linked to genetic variations in the APOE gene, particularly the ε4 allele, which influences LDL cholesterol levels. This study aimed to examine the association between APOE gene variants and plasma sphingomyelin levels in Korean individuals with hypercholesterolemia, using a metabolite genome-wide association study (mGWAS) approach. Data from 7,031 participants in the Korean Genome and Epidemiology Study (KoGES) were analyzed. Genetic associations with cholesterol and sphingomyelin levels were evaluated through Exome chip analysis and metabolite profiling. Significant associations were identified between specific APOE variants (e.g., rs769449, rs4420638) and serum cholesterol levels. Additionally, certain SNPs were linked to variations in plasma sphingomyelin levels, suggesting a genetic influence on both lipid and sphingomyelin metabolism. The findings underscore the relevance of mGWAS in unraveling the genetic and metabolic pathways involved in hypercholesterolemia, offering potential biomarkers for disease risk and therapeutic targets.

Whole Genome Sequencing of a Methicillin-Resistant Staphylococcus aureus Sequence Type 5 Strain SA492 Isolated from a Patient in Korean

  • Ji Heon Park;Gi Yong Lee;Ji Hyun Lim;Soo-Jin Yang
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.1
    • /
    • pp.97-98
    • /
    • 2024
  • Methicillin-resistant Staphylococcus aureus (MRSA) represents antimicrobial-resistant bacteria that can cause a wide range of illnesses both in humans and animals. Multidrug resistance phenotype is common, especially in healthcare-associated (HA) MRSA strains. Currently, one of the most prevalent HA-MRSA clonal lineages in Korean hospitals is sequence type (ST) 5 carrying staphylococcal cassette chromosome mec type II (ST5-SCCmec II). Here, we report the complete genome sequence of an ST5 HA-MRSA strain (SA492) originated from a patient in Korea.