• Title/Summary/Keyword: Genome analysis

Search Result 2,360, Processing Time 0.034 seconds

High-throughput identification of chrysanthemum gene function and expression: An overview and an effective proposition

  • Nguyen, Toan Khac;Lim, Jin Hee
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Since whole-genome duplication (WGD) of diploid Chrysanthemum nankingense and de novo assembly whole-genome of C. seticuspe have been obtained, they have afforded to perceive the diversity evolution and gene discovery in the improved investigation of chrysanthemum breeding. The robust tools of high-throughput identification and analysis of gene function and expression produce their vast importance in chrysanthemum genomics. However, the gigantic genome size and heterozygosity are also mentioned as the major obstacles preventing the chrysanthemum breeding practices and functional genomics analysis. Nonetheless, some of technological contemporaries provide scientific efficient and promising solutions to diminish the drawbacks and investigate the high proficient methods for generous phenotyping data obtaining and system progress in future perspectives. This review provides valuable strategies for a broad overview about the high-throughput identification, and molecular analysis of gene function and expression in chrysanthemum. We also contribute the efficient proposition about specific protocols for considering chrysanthemum genes. In further perspective, the proper high-throughput identification will continue to advance rapidly and advertise the next generation in chrysanthemum breeding.

Analysis of the Genome of Symbiobacterium toebii by Pulsed-Field Gel Electrophoresis

  • Hong, Seung-Pyo;Park, Jong-Hoon;Kim, Yong-Seung;Hwang, Hae-Jun;Rhee, Sung-Keun;Lee, Seung-Goo;Sung, Moon-Hee;Esaki, Nobuyoshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.405-409
    • /
    • 2000
  • We have studied the genome of an obligately commensal thermophile, Symbiobacterium toebii. The chromosome was extracted from pure cultures of S. toebii recently established. Total DNA of S. toebii was resolved by pulsed-field gel electrophoresis (PFGE) into discrete numbers of fragments by digenstion with the endonuclease SspI, SpeI, XbaI, and HpaI. Estimated sizes of fragments produced by the four enzymes and their sum consistently yielded a total genome size of 2.8 Mb. Because restriction endonucleases NotI and SwaI, recognizing 8 bp, released too many fragments, these enzymes could not be used for the estimation of the genome size. Considering no mobility of undigested genome under PFGE, the genome of S. toebii appears to be circular. The presence of extrachromosomal DNA in S. toebii was excluded by the results of the conventional 1% agarose gel electrophoresis and the field inversion gel electrophoresis of undigested S. toebii DNA.

  • PDF

Comparative Genomics Study of Interferon-$\alpha$ Receptor-1 in Humans and Chimpanzees

  • Kim, Il-Chul;Chi, Seung-Wook;Kim, Dae-Won;Choi, Sang-Haeng;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.142-148
    • /
    • 2005
  • The immune response-related genes have been suggested to be the most favorable genes for positive selection during evolution. Comparing the entire DNA sequence of chimpanzee chromosome 22 (PTR22) with human chromosome 21 (HSA21), we have identified 15 orthologs having indel in their coding sequences. Among them, interferon-${\alpha}$ receptor-1 gene (IFNAR1), an immuneresponse-related gene, is subjected to comparative genomic analysis. Chimpanzee IFNAR1 showed the same genomic structure as human IFNAR1 (11 exons and 10 introns) except the 3 bp insertion in exon 4. The sequence alignment of IFNAR1 coding sequence indicated that 'ISPP' amino acid sequence motif is highly conserved in chimpanzee and other animals including mouse and chicken. However, the human IFNAR1 shows that one proline residue is missing in the sequence motif. The homology modeling of the IFNAR1 structures suggests that the proline deletion in human IFNAR1 leads to the formation of the following ${\alpha}$-helix, whereas two sequential prolines in chimpanzee IFNAR1 inhibit it. As a result, human IFNAR1 may adopt a characteristic structure distinct from chimpanzee IFNAR1. This human specific trait could contribute to specific immune response in the most optimized manner for humans. Further molecular biological studies on the IFNAR1 will help us to gain insights into the molecular implication of species-specific host-pathogen interaction in primate evolution.

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Current status of Brassica A genome analysis (Brassica A genome의 최근 연구 동향)

  • Choi, Su-Ryun;Kwon, Soo-Jin
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.33-48
    • /
    • 2012
  • As a scientific curiosity to understand the structure and the function of crops and experimental efforts to apply it to plant breeding, genetic maps have been constructed in various crops. Especially, in the case of Brassica crop, genetic mapping has been accelerated since genetic information of model plant $Arabidopsis$ was available. As a result, the whole $B.$ $rapa$ genome (A genome) sequencing has recently been done. The genome sequences offer opportunities to develop molecular markers for genetic analysis in $Brassica$ crops. RFLP markers are widely used as the basis for genetic map construction, but detection system is inefficiency. The technical efficiency and analysis speed of the PCR-based markers become more preferable for many form of $Brassica$ genome study. The massive sequence informative markers such as SSR, SNP and InDels are also available to increase the density of markers for high-resolution genetic analysis. The high density maps are invaluable resources for QTLs analysis, marker assisted selection (MAS), map-based cloning and comparative analysis within $Brassica$ as well as related crop species. Additionally, the advents of new technology, next-generation technique, have served as a momentum for molecular breeding. Here we summarize genetic and genomic resources and suggest their applications for the molecular breeding in $Brassica$ crop.

RGISS: Rice (Oryza sativa L. ssp. japonica) Genome Information Service System

  • Lee, Dae-Sang;Seo, Hwa-Jung;Hahn, Jang-Ho;Kong, Eun-Bae;Park, Kie-Jung
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.194-195
    • /
    • 2007
  • We have constructed the Rice Genome Information Service System (RGISS), which is an information service system of the Oryza sativa L. ssp. japonica (rice) genome, using the released version of rice Build 3.0 pseudomolecules based on the Ensembl architecture. The nonredundant library, composed of 3,360 clones of BACs, PACs, and fosmids, was used to construct supercontigs. RGISS contains 50,717 annotated genes from GenBank, 56,161 predicted genes from FgeneSH, and information on 9,587 markers, which includes STS, SSR, and EST-based RFLP. The 20,180 ESTs sequenced by the Korea National Institute of Agricultural Biotechnology (NIAB) were aligned and mapped into 168,792 exons. By gene ontology analysis, the classified protein numbers in the rice genome were 6158, 4531, and 12,364 proteins, which were mapped to molecular function, cellular component, and biological process, respectively.

The Complete Mitochondrial Genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephtheidae)

  • Park, Eun-Ji;Kim, Bo-A;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.26 no.3
    • /
    • pp.197-201
    • /
    • 2010
  • We sequenced the whole mitochondrial genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephteidae), the first mitochondrial genome sequence report in the Family Nephtheidae. The mitochondrial genome of D. gigantea was 18,842 bp in length, and contained 14 protein coding genes (atp6 and 8, cox1-3, cytb, nd1-6 and 4L, and msh1), two ribosomal RNAs, and only one transfer RNA. The gene content and gene order is identical to other octocorals sequenced to date. The portion of the noncoding regions is slightly larger than the other octocorals (5.08% compared to average 3.98%). We expect that the information of gene content, gene order, codon usage, noncoding region and protein coding gene sequence could be used in the further analysis of anthozoan phylogeny.

Complete genome sequence of Streptococcus hyointestinalis B19, a strain producing bacteriocin, isolated from chicken feces

  • Lee, Ju-Eun;Heo, Sunhak;Kim, Geun-Bae
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.420-422
    • /
    • 2020
  • Streptococcus hyointestinalis B19 was isolated from chicken feces collected from local farm in Anseong, Korea. S. hyointestinalis B19 was shown to produce bacteriocin-like compounds exhibiting inhibitory activities against several pathogens including strains of Clostridium perfringens and Listeria monocytogenes. The whole genome of S. hyointestinalis B19 strain was sequenced using PacBio RS II platform. The genome comprised four contigs with a size of 2,217,061 bp. The DNA G + C content was found to be 42.95 mol%. Annotation results revealed 2,266 coding sequences (CDSs), 18 rRNAs, and 61 tRNA genes. Based on genome analysis, we found that the strain B19 possessed various genes associated with bacteriocin synthesis, modification, and transport.