• 제목/요약/키워드: Genome Scan

검색결과 33건 처리시간 0.024초

A Genome-wide Scan for Selective Sweeps in Racing Horses

  • Moon, Sunjin;Lee, Jin Woo;Shin, Donghyun;Shin, Kwang-Yun;Kim, Jun;Choi, Ik-Young;Kim, Jaemin;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권11호
    • /
    • pp.1525-1531
    • /
    • 2015
  • Using next-generation sequencing, we conducted a genome-wide scan of selective sweeps associated with selection toward genetic improvement in Thoroughbreds. We investigated potential phenotypic consequence of putative candidate loci by candidate gene association mapping for the finishing time in 240 Thoroughbred horses. We found a significant association with the trait for Ral GApase alpha 2 (RALGAP2) that regulates a variety of cellular processes of signal trafficking. Neighboring genes around RALGAP2 included insulinoma-associated 1 (INSM1), pallid (PLDN), and Ras and Rab interactor 2 (RIN2) genes have similar roles in signal trafficking, suggesting that a co-evolving gene cluster located on the chromosome 22 is under strong artificial selection in racehorses.

Prediction of Mammalian MicroRNA Targets - Comparative Genomics Approach with Longer 3' UTR Databases

  • Nam, Seungyoon;Kim, Young-Kook;Kim, Pora;Kim, V. Narry;Shin, Seokmin;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • 제3권3호
    • /
    • pp.53-62
    • /
    • 2005
  • MicroRNAs play an important role in regulating gene expression, but their target identification is a difficult task due to their short length and imperfect complementarity. Burge and coworkers developed a program called TargetScan that allowed imperfect complementarity and established a procedure favoring targets with multiple binding sites conserved in multiple organisms. We improved their algorithm in two major aspects - (i) using well-defined UTR (untranslated region) database, (ii) examining the extent of conservation inside the 3' UTR specifically. Average length in our UTR database, based on the ECgene annotation, is more than twice longer than the Ensembl. Then, TargetScan was used to identify putative binding sites. The extent of conservation varies significantly inside the 3' UTR. We used the 'tight' tracks in the UCSC genome browser to select the conserved binding sites in multiple species. By combining the longer 3' UTR data, TargetScan, and tightly conserved blocks of genomic DNA, we identified 107 putative target genes with multiple binding sites conserved in multiple species, of which 85 putative targets are novel.

Predicting the Accuracy of Breeding Values Using High Density Genome Scans

  • Lee, Deuk-Hwan;Vasco, Daniel A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.162-172
    • /
    • 2011
  • In this paper, simulation was used to determine accuracies of genomic breeding values for polygenic traits associated with many thousands of markers obtained from high density genome scans. The statistical approach was based upon stochastically simulating a pedigree with a specified base population and a specified set of population parameters including the effective and noneffective marker distances and generation time. For this population, marker and quantitative trait locus (QTL) genotypes were generated using either a single linkage group or multiple linkage group model. Single nucleotide polymorphism (SNP) was simulated for an entire bovine genome (except for the sex chromosome, n = 29) including linkage and recombination. Individuals drawn from the simulated population with specified marker and QTL genotypes were randomly mated to establish appropriate levels of linkage disequilibrium for ten generations. Phenotype and genomic SNP data sets were obtained from individuals starting after two generations. Genetic prediction was accomplished by statistically modeling the genomic relationship matrix and standard BLUP methods. The effect of the number of linkage groups was also investigated to determine its influence on the accuracy of breeding values for genomic selection. When using high density scan data (0.08 cM marker distance), accuracies of breeding values on juveniles were obtained of 0.60 and 0.82, for a low heritable trait (0.10) and high heritable trait (0.50), respectively, in the single linkage group model. Estimates of 0.38 and 0.60 were obtained for the same cases in the multiple linkage group models. Unexpectedly, use of BLUP regression methods across many chromosomes was found to give rise to reduced accuracy in breeding value determination. The reasons for this remain a target for further research, but the role of Mendelian sampling may play a fundamental role in producing this effect.

A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds

  • Edea, Zewdu;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • 제56권7호
    • /
    • pp.23.1-23.7
    • /
    • 2014
  • Background: Scanning of the genome for selection signatures between breeds may play important role in understanding the underlie causes for observable phenotypic variations. The discovery of high density single nucleotide polymorphisms (SNPs) provide a useful starting point to perform genome-wide scan in pig populations in order to identify loci/candidate genes underlie phenotypic variation in pig breeds and facilitate genetic improvement programs. However, prior to this study genomic region under selection in commercially selected Berkshire and Korean native pig breeds has never been detected using high density SNP markers. To this end, we have genotyped 45 animals using Porcine SNP60 chip to detect selection signatures in the genome of the two breeds by using the $F_{ST}$ approach. Results: In the comparison of Berkshire and KNP breeds using the FDIST approach, a total of 1108 outlier loci (3.48%) were significantly different from zero at 99% confidence level with 870 of the outlier SNPs displaying high level of genetic differentiation ($F_{ST}{\geq}0.490$). The identified candidate genes were involved in a wide array of biological processes and molecular functions. Results revealed that 19 candidate genes were enriched in phosphate metabolism (GO: 0006796; ADCK1, ACYP1, CAMK2D, CDK13, CDK13, ERN1, GALK2, INPP1; MAK, MAP2K5, MAP3K1, MAPK14, P14KB, PIK3C3, PRKC1, PTPRK, RNASEL, THBS1, BRAF, VRK1). We have identified a set of candidate genes under selection and have known to be involved in growth, size and pork quality (CART, AGL, CF7L2, MAP2K5, DLK1, GLI3, CA3 and MC3R), ear morphology and size (HMGA2 and SOX5) stress response (ATF2, MSRB3, TMTC3 and SCAF8) and immune response (HCST and RYR1). Conclusions: Some of the genes may be used to facilitate genetic improvement programs. Our results also provide insights for better understanding of the process and influence of breed development on the pattern of genetic variations.

Compiling Multicopy Single-Stranded DNA Sequences from Bacterial Genome Sequences

  • Yoo, Wonseok;Lim, Dongbin;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제14권1호
    • /
    • pp.29-33
    • /
    • 2016
  • A retron is a bacterial retroelement that encodes an RNA gene and a reverse transcriptase (RT). The former, once transcribed, works as a template primer for reverse transcription by the latter. The resulting DNA is covalently linked to the upstream part of the RNA; this chimera is called multicopy single-stranded DNA (msDNA), which is extrachromosomal DNA found in many bacterial species. Based on the conserved features in the eight known msDNA sequences, we developed a detection method and applied it to scan National Center for Biotechnology Information (NCBI) RefSeq bacterial genome sequences. Among 16,844 bacterial sequences possessing a retron-type RT domain, we identified 48 unique types of msDNA. Currently, the biological role of msDNA is not well understood. Our work will be a useful tool in studying the distribution, evolution, and physiological role of msDNA.

The Study of X Chromosome Inactivation Mechanism in Klinefelter's Syndrome by cDNA Microarray Experiment

  • Jeong, Yu-Mi;Chung, In-Hyuk;Park, Jung Hoon;Lee, Sook-Hwan;Chung, Tae-Gyu;Kim, Yong Sung;Kim, Nam-Soon;Yoo, Hyang-Sook;Lee, Suman
    • Genomics & Informatics
    • /
    • 제2권1호
    • /
    • pp.30-35
    • /
    • 2004
  • To investigate the XIST gene expression and its effect in a Klinefelter's patient, we used Klinefelter's syndrome (XXY) patient with azoospermia and also used a normal male (XY) and a normal female (XX) as the control, We were performed cytogenetic analysis, Y chromosomal microdeletion assay (Yq), semi-quantitative RT-PCR, and the Northern blot for Klinefelter's syndrome (KS) patient, a female and a male control, We extracted total RNA from the KS patient, and from the normal cells of the female and male control subjects using the RNA prep kit (Qiagen), cDNA microarray contained 218 human X chromosome-specific genes was fabricated. Each total RNA was reverse transcribed to the first strand cDNA and was labeled with Cy-3 and Cy-5 fluorescein, The microarray was scanned by ScanArray 4000XL system. XIST transcripts were detected from the Klinefelters patient and the female by RT-PCR and Northern blot analysis, but not from the normal male, In the cDNA microarray experiment, we found 24 genes and 14 genes are highly expressed in KS more than the normal male and females, respectively. We concluded that highly expressed genes in KS may be a resulted of the abnormal X inactivation mechanism.

스캔 통계량의 발전 과정과 응용에 대한 고찰 (A review on the development of a scan statistic and its applications)

  • 김병수;김기한
    • 응용통계연구
    • /
    • 제6권1호
    • /
    • pp.125-143
    • /
    • 1993
  • 관측치가 (0, T]의 구간에서 균일하게 분포한다는 가설에 대하여, 관측치의 집락화를 검정하는 과정에서 스캔 통계량을 사용할 수 있다. 본 논문에서는 스캔 통계량의 확률분포의 근사분포가 어떠한 이론적 배경으로 개선되어 왔는 지를 고찰하고, 실제로 응용된 예를 살펴보기로 한다. 광물 매장을 조사하기 위한 항공탐사, 두 개의 아미노산 염기서열(amino-acid sequence)을 비교하는 과정에서 스캔 통계량은 사용되어 왔다. 지놈(genome)의 連鎖(sequence)에서 돌연변이가 발생한 위치에 대하여 집락의 가능성을 검색하는 방법으로 스캔 통계량을 이용할 수 있음을 보이고, 이에 대한 구체적인 문제 구성은 추후 연구과제로 제시한다.

  • PDF

FusionScan: accurate prediction of fusion genes from RNA-Seq data

  • Kim, Pora;Jang, Ye Eun;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.26.1-26.12
    • /
    • 2019
  • Identification of fusion gene is of prominent importance in cancer research field because of their potential as carcinogenic drivers. RNA sequencing (RNA-Seq) data have been the most useful source for identification of fusion transcripts. Although a number of algorithms have been developed thus far, most programs produce too many false-positives, thus making experimental confirmation almost impossible. We still lack a reliable program that achieves high precision with reasonable recall rate. Here, we present FusionScan, a highly optimized tool for predicting fusion transcripts from RNA-Seq data. We specifically search for split reads composed of intact exons at the fusion boundaries. Using 269 known fusion cases as the reference, we have implemented various mapping and filtering strategies to remove false-positives without discarding genuine fusions. In the performance test using three cell line datasets with validated fusion cases (NCI-H660, K562, and MCF-7), FusionScan outperformed other existing programs by a considerable margin, achieving the precision and recall rates of 60% and 79%, respectively. Simulation test also demonstrated that FusionScan recovered most of true positives without producing an overwhelming number of false-positives regardless of sequencing depth and read length. The computation time was comparable to other leading tools. We also provide several curative means to help users investigate the details of fusion candidates easily. We believe that FusionScan would be a reliable, efficient and convenient program for detecting fusion transcripts that meet the requirements in the clinical and experimental community. FusionScan is freely available at http://fusionscan.ewha.ac.kr/.

돼지에 있어서 양적 형질 유전자좌(QTL) 발현 특성 분석을 위한 통계적 검정 모형 설정 (Designing of the Statistical Models for Imprinting Patterns of Quantitative Traits Loci (QTL) in Swine)

  • 윤두학;공홍식;조용민;이지웅;최익서;이학교;전광주;오성종;정일정
    • 한국수정란이식학회지
    • /
    • 제19권3호
    • /
    • pp.291-299
    • /
    • 2004
  • 요크셔종과 버크셔종 교배 실험 집단을 활용하여 양적형질 유전자좌 (QTL)의 발현 특성 관련 유전 양식을 조사하였다. 총 512두의 F$_2$ 자손이 F$_1$간의 65교배 조합으로부터 생산되었으며 표현형 조사 기록은 일당증제량(ADG), 평균 등지방 두께(ABF), 10번째 등뼈 부위 등지방 두께(TRF) 및 등심단면적(LEA), 최후 척추부위 등지방 두께 (LRF)였다. 125종의 유전자 표지 (microsatellite)에 대한 3세대 개체별 유전자형이 분석되었으며 이들 정보를 통하여 최소자승 회귀 모형을 이용한 interval mapping 방법을 적용하였다. QTL의 유전양식 여부 검정에 대한 절차를 도식화하기 위해 귀무가설인 통상의 벤델리안 모형에 근거를 두고 수행하였다. 경험적 다중 검정 통계량에 대한 임계치는 단일 개개의 염색체 수준과 게놈 전반에 걸친 실험수준으로 유도하였으며, permutation에 의해 유도된 임계치의 유효성을 검증하기 위해 본 연구에 활용된 실험축 집단 구조와 유사한 simulation 집단 구조에 의해 산출된 결과들과 비교하여 유효성이 인정되었다. 본 연구에 활용된 실험축 집단구조와 Genome 전반에 걸친 QTL imprinting 여부를 조사한 결과 13종의 QTL 에 대한 imprinting이 확인되었으며 이들 중 9종의 QTL 유전 양식은 부계로부터 전달된 자손에게만 발현되는 것으로 추론되었다.