• Title/Summary/Keyword: Genetically modified Food

Search Result 164, Processing Time 0.026 seconds

Qualitative PCR Detection of vitamin E-enriched GM Perilla (비타민 E 강화 유전자변형 들깨에 대한 정성 PCR 분석법)

  • Kim, Jae-Hwan;Ahn, Ji-Hye;Song, Hee-Sung;Kim, Kyung-Hwan;Kim, Dong-Hern;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.192-195
    • /
    • 2006
  • For the development of a qualitative PCR detection method for genetically modified perilla (Perilla frutescens), perilla species-specific gene, KAS-I (Beta-ketoacyl-ACP synthase I), was selected and validated as suitable for the use as an endogenous reference gene in perilla. Primer specificity was first tested by the means of qualitative PCR analysis. The primer pair Pfru3-F/R amplifying the perilla endogenous gene, KAS-I, gave rise to an amplicon 95 bp. No amplified product was observed when DNA samples from 15 different plants were used as templates. Qualitative PCR detection method was assayed with vitamin E-enriched GM Perilla developed in Korea. For the qualitative PCR detection method, the construct-specific detection primer pairs were constructed. The primer pair TMTO-F/R amplifying the junction region of TMT (${\gamma}$-tocopherol methyltransferase) gene and OCS (Octopine synthase) terminator introduced in GM perilla gave rise to an amplicon 148 bp.

Glyphosate Resistant Conyza canadensis Occurring in Tangerine Orchards of Jeju Province of Korea

  • Bo, Aung Bo;Won, Ok Jae;Park, In Kon;Roh, Sug-Won;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.350-354
    • /
    • 2017
  • Conyza canadensis is the weed species which most frequently develops resistance to glyphosate in many agricultural crop fields. The continuous use of glyphosate has resulted in the spontaneous occurrences of resistant biotypes. This research was conducted to investigate the response of suspected C. canadensis biotypes to glyphosate. Seeds of C. canadensis were collected from 18 sites in tangerine orchards in Jeju province of Korea. In the preliminary screening, 6 resistant and 12 susceptible biotypes were found at the recommended glyphosate rate ($3.28kga.i.ha^{-1}$). The susceptible biotypes were completely killed at the field application rate whereas the resistant biotypes were initially injured but recovered 14 days after glyphosate application. This is the first case of glyphosate resistance found in Korea despite the national ban on genetically modified glyphosate tolerant crops cultivation. Extended monitoring should be conducted to understand how widely spread the glyphosate resistant C. canadensis is and to estimate the severity of this weed problem in the tangerine orchards of Korea.

DNAchip as a Tool for Clinical Diagnostics (진단의학 도구로서의 DNA칩)

  • 김철민;박희경
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.97-100
    • /
    • 2004
  • The identification of the DNA structure as a double-stranded helix consting of two nucleotide chain molecules was a milestone in modern molecular biology. The DNA chip technology is based on reverse hybridization that follows the principle of complementary binding of double-stranded DNA. DNA chip can be described as the deposition of defined nucleic acid sequences, probes, on a solid substrate to form a regular array of elements that are available for hybridization to complementary nucleic acids, targets. DNA chips based on cDNA clons, oligonucleotides and genomic clons have been developed for gene expression studies, genetic variation analysis and genomic changes associated with disease including cancers and genetic diseases. DNA chips for gene expression profiling can be used for functional analysis in human eel Is and animal models, disease-related gene studies, assessment of gene therapy, assessment of genetically modified food, and research for drug discovery. DNA chips for genetic variation detection can be used for the detection of mutations or chromosomal abnormalities in cnacers, drug resistances in cancer cells or pathogenic microbes, histocompatibility analysis for transplantation, individual identification for forensic medicine, and detection and discrimination of pathogenic microbes. The DNA chip will be generalized as a useful tool in clinical diagnostics in near future. Lab-on-a chip and informatics will facilitate the development of a variety of DNA chips for diagnostic purpose.

  • PDF

Microspore Division and Plant Regeneration from Shed Pollen Culture in Rice

  • Kim, Hyun-Soon;Kang, Hyeon-Jung;Lee, Young-Tae;Lee, Seung-Yeob;Nam, Jeong-Kwon;Kim, Tae-Soo;Rha, Eui-Shik;Jin, Il-Doo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.1
    • /
    • pp.62-67
    • /
    • 2002
  • An efficient system of rice microspore culture could contribute to the production of genetically modified rice. The microspores were isolated by mechanical or shed methods. The number of microspores per 100 anthers isolated at uninucleate stage was higher than (or similar to) those at binucleate stage in isolation method with pestle or spatular, but microspore divisions were not easily observed on both stages. On the other hand, pollen division in shed pollen culture was observed more frequently at uninuclear than at binuclear stage. Cold pretreatment at 1$0^{\circ}C$ for 10 days resulted in the best multicellular division to produce microcalli at 12.5% efficiency in shed microspores. Heat shock at 33$^{\circ}C$ for one hour before or after pollen shedding enhanced cell division and callus formation. Out of twelve green regenerants, two were haploids and ten were diploids based on the chromosome analysis of root tips. The size of stoma was 12$^{m}$ m in haploids and 15 ${\mu}{\textrm}{m}$ in diploids determined by scanning electron microscope (SEM).

Status of corn diversity in the marginal uplands of sarangani province, the Philippines: implications for conservation and sustainable use

  • Aguilar, Catherine Hazel;Espina, Pamela Grace;Zapico, Florence
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.68-68
    • /
    • 2017
  • The status of corn genetic diversity in the uplands of Sarangani in Southern Philippines was investigated using 12 morphological traits subjected to multivariate statistical analyses. Information about traditional farming, post-harvest and storage practices were also elicited especially in relation to losses of traditional varieties, a phenomenon known as genetic erosion. While a handful of farmers still plant traditional corn varieties in the remotest areas, a significant number had already shifted to genetically modified corn. Furthermore, principal component analysis (PCA) reduced the 12 morphological traits into 5 principal components and identified ear length and ear weight to be major contributors to variation. Cluster Analysis, on the other hand, formed two distinct groups but failed to give information about intra-cluster variability among the 32 collected corn accessions. These results warrant that more informative morphological traits and that molecular markers will be used to obtain a better picture of genetic diversity in Sarangani upland corn. Molecular analysis is also needed to establish genetic identities of these cultivars and to detect gene introgression from GM varieties into the gene pool of farmers' corn varieties. These analyses are imperative for the conservation of traditional corn varieties before they disappear in the Sarangani uplands because of shifting priorities of upland farmers.

  • PDF

Applications of Microbial Whole-Cell Biosensors in Detection of Specific Environmental Pollutants (특이 환경오염물질 검출을 위한 미생물 세포 바이오센서의 활용)

  • Shin, Hae-Ja
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.159-164
    • /
    • 2011
  • Microbial whole-cell biosensors can be excellent analytical tools for monitoring environmental pollutants. They are constructed by fusing reporter genes (e.g., lux, gfp or lacZ) to inducible regulatory genes which are responsive to the relevant pollutants, such as aromatic hydrocarbons and heavy metals. A large spectrum of microbial biosensors has been developed using recombinant DNA technology and applied in fields as diverse as environmental monitoring, medicine, food processing, agriculture, and defense. Furthermore, their sensitivity and target range could be improved by modification of regulatory genes. Recently, microbial biosensor cells have been immobilized on chips, optic fibers, and other platforms of high-throughput cell arrays. This paper reviews recent advances and future trends of genetically modified microbial biosensors used for monitoring of specific environmental pollutants.

The Pragmatic Introduction and Expression of Microbial Transgenes in Plants

  • Ali, Sajid;Park, Soon-Ki;Kim, Won-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1955-1970
    • /
    • 2018
  • Several genetic strategies have been proposed for the successful transformation and expression of microbial transgenes in model and crop plants. Here, we bring into focus the prominent applications of microbial transgenes in plants for the development of disease resistance; mitigation of stress conditions; augmentation of food quality; and use of plants as "bioreactors" for the production of recombinant proteins, industrially important enzymes, vaccines, antimicrobial compounds, and other valuable secondary metabolites. We discuss the applicable and cost-effective approaches of transgenesis in different plants, as well as the limitations thereof. We subsequently present the contemporary developments in targeted genome editing systems that have facilitated the process of genetic modification and manifested stable and consumer-friendly, genetically modified plants and their products. Finally, this article presents the different approaches and demonstrates the introduction and expression of microbial transgenes for the improvement of plant resistance to pathogens and abiotic stress conditions and the production of valuable compounds, together with the promising research progress in targeted genome editing technology. We include a special discussion on the highly efficient CRISPR-Cas system helpful in microbial transgene editing in plants.

The Effects on Information Types of GMO for Consumers' Value Perception (GMO 정보 전달 방식이 소비자의 가치 인식에 미치는 영향)

  • Yu, Byeong-Deok;Lee, Su-Rin;Yang, Sung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.31 no.4
    • /
    • pp.309-325
    • /
    • 2023
  • GMO labeling system in South Korea stipulates three labeling methods: GMO labeling, no labeling and Non-GMO labeling. Products labeled as Non-GMO are not allowed for unintentional commingling of GMO without tolerance. However, consumers vary their acceptance of Non-GMO label on the unintentionally commingled products and willingness to pay according to the mixing rate, rather than devalue the whole products as useless. Additionally, consumers do not believe that the acceptable mixing rate should be discriminated between non-labeled products, which allow up to 3% of unintentional GMO contamination, and Non-GMO labeled products. Information on unintentional GMO mixing mainly refers to the mixing rate, but the Non-GMO content remaining even after commingling is also important information. The decline in value is alleviated when consumers are exposed to positive information, such as Non-GMO content, rather than when exposed to negative information, such as the mixing rate. Loss Aversion Coefficient is relative depending on whether the information representing the loss is positive or negative. Information that a Non-GMO labeled product contains X% GMO is more sensitive than information that (100-X)% Non-GMO remains.

Global trends in regulatory frameworks for animal genome editing in agriculture

  • Dajeong Lim;Inchul Choi
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.247-253
    • /
    • 2023
  • Revolutionary advancements, such as the reduction in DNA sequencing costs and genome editing, have transformed biotechnology, fostering progress in manipulating biomolecules, engineering cells, and computational biology. Agriculture and food production have significantly benefited from tools like high-throughput microarrays, accelerating the selection of desired traits. Genetic engineering, especially utilizing genome editing, facilitates precise alterations in plants and animals, harnessing microbiomes and fostering lab-grown meat production to alleviate environmental pressures. The emergence of new biotechnologies, notably genome editing, underscores the necessity for regulatory frameworks governing LM (living modified) organisms. Global regulations overseeing genetically engineered or genome-edited (GE) organisms, encompassing animals, exhibit considerable diversity. Nonetheless, prevailing international regulatory trends typically exclude genomeedited plants and animals, employing novel biotechnological techniques, from GMO/ LMO classification if they lack foreign genes and originate through natural mutations or traditional breeding programs. This comprehensive review scrutinizes ongoing risk and safety assessment cases, such as genome-edited beef cattle and fish in the USA and Japan. Furthermore, it investigates the limitations of existing regulations related to genome editing in Korea and evaluates newly proposed legislation, offering insights into the future trajectory of regulatory frameworks.

An Educational Needs Analysis of Home Economics Teachers for Food Literacy Education in Secondary School Home Economics (중등 가정과 푸드리터러시 함양 식생활교육에 대한 가정과 교사의 교육 요구도 분석)

  • Song, Yunmi;Lee, Kyung Won
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.2
    • /
    • pp.41-59
    • /
    • 2023
  • This study aimed at analyzing the educational needs of home economics teachers for food literacy cultivation education in secondary school home economics. A total of 192 home economics teachers were surveyed about their perceptions of importance and performance of food literacy education content categories and elements, and their priorities were identified. Among the 38 content elements presented, home economics teachers recognized that the current performance level was significantly lower than that of the importance over 34 content elements. Based on the Borich educational needs assessment and the Locus for Focus Model, we identified five content elements with 'very high' educational needs ('food security/food sovereignty', 'reducing food-related waste', 'food waste management and recycling', 'food-related waste recycling', and 'country of origin information'), and four content elements with 'high' educational needs ('genetically modified food', 'ethical food consumption', 'food additives', and 'eco-friendly agricultural products'). These results indicate that dietary education in secondary school home economics should emphasize both the production and disposal of food. The findings of this study suggest implications for the needs for a new dietary education in secondary school home economics that allows students to learn all stages of food system. These results can also be used as a basis for dietary education for cultivating food literacy in secondary school home economics education.