• 제목/요약/키워드: Genetically Modified Soybeans

검색결과 29건 처리시간 0.021초

Market Power of Genetically Modified Soybeans Traded Between the United States and Korea

  • Son, Eun-Ae;Lim, Song Soo
    • Journal of Korea Trade
    • /
    • 제23권6호
    • /
    • pp.131-144
    • /
    • 2019
  • Purpose - The purpose of this study was to investigate market power of soybeans exported by the United States to Korea. Particularly, this paper considered dichotomous characteristics of genetically modified (GM) soybeans and non-GM soybeans and conducted empirical analysis of these two segregated soybean markets to understand key tenets of market power in international soybean trade. Design/methodology - The difference in market power between GM and non-GM soybeans was analyzed using Residual Demand Elasticity (RDE) and Residual Supply Elasticity (RSE) models over the period of 2008~2018. RDE and RSE models under an imperfect competition condition were used to estimate market margins and determine whether GM and non-GM exporters or importers exercised market power in the destination market. Findings - Empirical results suggested that the U.S. had a market power on both GM and non-GM soybean exports. GM exports had greater market power than non-GM exports (14% vs. 9%). By contrast, Korea showed an inability to grab market margin or exert market power in soybean imports. Both export supply by the U.S. and import demand by Korea were found to be more responsive to price changes of GM soybeans than to prices changes of non-GM soybeans. This might be due to a self-interested, profit-seeking strategy by the exporter and many concerned consumers regarding potential adverse effects of GMOs in the importing country. Originality/value - This paper fills the literature gap by exploiting market power in both GM and non-GM markets with explicit consideration of price correlations between GM and non-GM soybeans in Korea. A number of existing studies have provided evidence for market power broadly embedded in international commodity trade. However, studies focusing on Korean markets are limited. No study has explored the country's soybean trade. Furthermore, the majority of prior studies have almost exclusively focused on the market power from a standpoint of exporting countries without discussing importers' market structure. This paper also sought to understand potentially distinguished patterns of market power between GM and non-GM markets.

Detection of Recombinant Marker DNA in Genetically Modified Glyphosate- Tolerant Soybean and Use in Environmental Risk Assessment

  • Kim, Young-Tae;Park, Byoung-Keun;Hwang, Eui-Il;Yim, Nam-Hui;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.390-394
    • /
    • 2004
  • The genetically modified glyphosate-tolerant soybean contains the following introduced DNA sequences: the EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene from Agrobacterium sp. strain CP4, the 35S promoter from the cauliflower mosaic virus, and the NOS terminator from Agrobacterium tumefaciens. In the present study, detection of these introduced DNAs was performed by amplification using the polymerase chain reaction (PCR). A multiplex PCR method was also applied to prevent false positive results. When primers for 35S promoter, nos3', CTP(chloroplast transit peptide), and CP4 EPSPS (EPSPS from Agrobacterium sp. CP4) were used, positive results were obtained in PCR reactions using DNA from genetically modified glyphosate-tolerant soybeans. There were no false positive results when using DNA from non-genetically modified soybeans. The CP4 EPSPS gene was detected when less than 125 pg glyphosate-tolerant soybean DNA was amplified. Lectin Lel and psb A were amplified from both non-genetically modified and genetically modified glyphosate-tolerant soybean DNA. Multiplex PCR was performed using different primer sets for actin Sacl, 35S promoter and CP4 EPSPS. The actin gene was detectable in both non-genetically modified and glyphosate-tolerant soybeans as a constant endogenous gene. Target DNAs for the 35S promoter, and CP4 EPSPS were detected in samples containing 0.01-0.1% glyphosate-tolerant soybean, although there were variations depending on primers by multiplex PCR. Soybean seeds from five plants of non-genetically modified soybean were co-cultivated for six months with those of genetically modified soybean, and they were analyzed by PCR. As a result, they were not positive for 35S promoter, nos3' or CP4 EPSPS. Therefore, these results suggest there was no natural crossing of genes between glyphosate-tolerant and non-genetically modified soybean during co-cultivation, which indicates that gene transfer between these plants is unlikely to occur in nature.

Assessment of environmental impact of vitamin A-enhanced soybeans and hybrid soybeans

  • Sung-Dug Oh;Ji Eun Choi;Ye-Jin Jang;Seong-Kon Lee;Gang-Seob Lee;Ancheol Chang;Doh-Won Yun
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.749-758
    • /
    • 2023
  • An understanding of safety problems pursuant to environmental release of GM (Genetically Modified) crops is considered important. Among the recognized safety problems, the possibilities of weediness and ecosystem invasion are constantly being validated. We herein compared the growth characteristics and germination rate of soybeans formed by hybridization with vitamin A-enhanced soybeans carrying an introduced gene that increases β-carotene content. We also examined overwintering, survival, and weed competitiveness to evaluate hybrid ecological impact on long-term unmanaged cultivatable land. These studies revealed that the hybrid soybeans exhibited intermediate growth characteristics and germination rate compared with the vitamin A-enhanced soybeans and wild soybeans, or exhibited traits similar to those of the maternal strain. Overwintering experiments were conducted by planting seeds at depths of 0, 5, 10, and 20 cm and recovering them after three or five months. After five months, all seeds at depths more than 5 cm lost viability. Among seeds recovered after three months, only wild soybeans retained viability at depths of more than 5 cm. Survival and weed competitiveness were assessed by sowing each type of seed and performing no irrigation, or pest or weed control. Quantitative assessment of numbers of individual soybean plants that appeared in the experimental plot revealed that all plants germinated after sowing, but only wild type plants survived overwintering. These studies suggest that both GM soybeans and hybrid soybeans cannot survive in uncultivated land even if they are released into the environment, which indicates less possibility of ecosystem invasion and weediness.

Investigation of Possible Gene Transfer to Soil Microorganisms for Environmental Risk Assessment of Genetically Modified Organisms

  • Kim, Young-Tae;Park, Byoung-Keun;Hwang, Eui-Il;Yim, Nam-Hui;Kim, Na-Rae;Kang, Tae-Hoon;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.498-502
    • /
    • 2004
  • The current study was conducted to monitor the possibility of the gene transfer among soil bacteria, including the effect of drift due to rain and surface water, in relation to the release of genetically modified organisms into the environment. Four types of bacteria, each with a distinct antibiotic marker, kanamycin-resistant P. fluorescens, rifampicin-resistant P. putida, chloramphenicol-resistant B. subtilis, and spectinomycin-resistant B. subtilis, were plated using a small-scale soil-core device designed to track drifting microorganisms. After three weeks of culture in the device, no Pseudomonas colonies resistant to both kanamycin and rifampicin were found. Likewise, no Bacillus colonies resistant to both chloramphenicol and spectinomycin were found. The gene transfer from glyphosate-tolerant soybeans to soil bacteria, including Rhizobium spp. as a symbiotic bacteria, was examined by hybridization using the DNA extracted from soil taken from pots, in which glyphosate-tolerant soybeans had been growing for 6 months. The results showed that 35S, T-nos, and EPSPS were observed in the positive control, but not in the DNA extracted from the soilborne microorganisms. In addition, no transgenes, such as the 35S promoter, T-nos, and EPSPS introduced into the GMO soybeans were detected in soilborne bacteria, Rhizobium leguminosarum, thereby strongly rejecting the possibility of gene transfer from the GMO soybeans to the bacterium.

Assessing weediness of herbicide tolerant genetically modified soybean

  • Ko, Eun Mi;Kim, Do Young;Kim, Hye Jin;Chung, Young Soo;Kim, Chang-Gi
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.560-566
    • /
    • 2016
  • Imports of genetically modified (GM) soybeans (Glycine max) for food or feed consumption in Korea have been increasing. Although the cultivation of GM soybeans has not yet been allowed in Korea, the number of field tests for GM soybeans has also been rising. This study was conducted to investigate whether herbicide tolerant GM soybean can survive and persist in uncultivated environments when they escape from transportation routes or from isolated fields. Seeds of GM and non-GM soybeans and wild soybeans (Glycine soja) were buried in 2 and 15 cm soil depths and their viability was examined after 1, 2, 6, and 10 months. GM and non-GM soybean seeds completely lost their viability within six months of burial, whereas seeds of wild soybean maintained their viability during the study period. Seeds of soybean and wild soybeans that were sown on the soil surface germinated and grew to vegetative cotyledon stage. Seedlings of GM and non-GM soybean did not compete well with weeds, including Cerastium glomeratum, Alopecurus aequalis var. amurensis, Capsella bursa-pastoris, Conyza canadensis, Stellaria aquatica, and Erigeron annuus. Also, GM soybean did not survive through winter. However, wild soybeans competed well with the weeds and became dominant in August. Herbicide tolerant GM soybean is unlikely to persist under uncultivated environments and to become weeds.

Safety Assessment of Foods Produced Using Recombinant DNA Techniques

  • Toyoda, Masatake
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.167-171
    • /
    • 2001
  • The introduction of genetically modified crops has raised concerns regarding safety issues over the insertion of foreign genes into plant genomes using recombinant DNA technology. Since 1991 in Japan, 29 foods and 6 food additives have been evaluated, based on the "Guideline for Safety Assessment", before these foods were marketed. The MHW, however, decided that safety assessment of such foods and food additives should be legally imposed. because soon such foods and food additives are expected to circulate globally and a new system for assessing safety of such foods and food additives at a pre-market stage is necessary, in order to avoid the distribution of any genetically modified foods that have had no safety assessment. The MHW published relevant announcements to amend existing regulations on 1 May 2000. "Standards for safety assessment of seed plant" is established based on a concept of substantial equivalence, and applicable to the products which are regarded as equivalent to the existing products used as foods and food additives. The characterization of the food products entails consideration of the molecular characterization. phenotypic and compositional characteristics, key nutrients and toxicants, and toxicity and allergenicity of the introduced proteins, and if there are indications of unintended effects of the modification, whether further safety testing (animal studies etc.) is needed should be considered. Safety and wholesomeness studies with whole foods should be care fully designed in order to avoid nutritional imbalances causing artifacts and uninterpretable results as was the case of Dr. Pusztaiis report. A case study of genetically modified soybeans (glyphosate-tolerant soybeans) on the immune system of rats and mice is shown. Chemical compositions were also compared with those of the non-GM soybeans. The studies failed to detect any differences in immuno-toxic activity.muno-toxic activity.

  • PDF

유전자변형 콩과 자연 콩의 알레르기 유발원 비교 (Comparison of Allergens in Genetically Modified Soybean with Conventional Soybean)

  • 박재현;정승태;김재희;김지영;노건웅
    • 약학회지
    • /
    • 제45권3호
    • /
    • pp.293-301
    • /
    • 2001
  • Genetically modified organism (GMO) using recombinant DNA technique has been exponentially increased, however there are still arguments for the safety of GM foods. The objective of this research was to compare the allergens of GM soybean(Roundup Ready$^{TM}$) with conventional soybeans. Each soybean extracts were prepared as crude extracts, heated extracts, and as heated and simulated gastric quid (SGF)-digested samples to characterize the stability of allergens to physicochemical treatment. Positive sera from 20 soybean-sensitive patients and control sera from 5 normal subjects were used to identify the endogenous allergens in soybeans. Specific-IgE binding activities to each soybean preparations were evaluated by ELISA and immunoblot technique. In ELISA result, IgE binding activities of positive sera to soy crude extracts generally showed two fold higher mean value than those of control sera, how-ever there was no significant difference between GM soybean and natural soybean varieties. Extracted proteins form each of the soybean preparations were separated with SDS-PAGE. The band pattern of GM soybean was very similar to those of natural soybean varieties. Immunoblots for the different soybeans revealed no differences in IgE-binding protein patterns, moreover, disclosed five prominent IgE-binding bands (75, 70, 50, 44 and 34 kDa) in crude extracts, four (75, 70, 44 and 34 kDa) in heated preparations, one (50 kDa) in heated and SGF-digested preparations. These IgE binding bands were consistent with previously reported results on the soybean. These results indicate that GM soybean (Roundup Ready$^{TM}$) is no different from natural soybean in terms of its allergen.gen.

  • PDF

GM 콩의 도입유전자 이동에 미치는 화분 매개충의 영향 (Influence of insect pollinators on gene transfer from GM to non-GM soybeans)

  • 이범규;김준형;손수인;권순종;박기웅;정영수;이시명
    • 농업과학연구
    • /
    • 제42권3호
    • /
    • pp.159-165
    • /
    • 2015
  • The cultivation area and use of genetically modified (GM) crops have been increased continuously over the world and concerns about the potential risks of GM crops are also increasing. One of the major concern in risk assessment is the possible development of hybrids through interspecific and intergeneric crosses with related species. This study was conducted to investigate the pollinator have an influence on insect-mediated gene transfer from GM soybeans. Hybrid was induced from GM soybeans by honeybee and western flower thrips, and non-GM soybeans were used as pollen receptor. The analysis for gene-flow was conducted by herbicide selection, immunostrip test, and PCR analysis. In the result of the analysis, three hybrids were detected on the distance 15, 75, 105 cm from pollen source in western flower thrips treatment. In honeybee treatment, one hybrid was detected in the farthest distance (300 cm). These results suggested honeybee and western flower thrips have a possibility they can transfer the introduced gene from GM soybeans to non-GM soybeans.

Influence of gene flow from GM to non-GM soybeans by the size of the pollen donor

  • Lee, Bumkyu;Oh, Sung-Dug;Chang, Ancheol
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.591-600
    • /
    • 2018
  • The use of genetically modified (GM) crops has increased continuously over the world, and concerns about the potential risks of GM crops have also risen. Although, until now, GM crops have not been cultivated commercially in Korea, it is necessary to develop technology for the safe evaluation of GM crops. In this study, we investigated the influence of gene flow from GM to non-GM soybeans by the size of the pollen donor. In the experimental design, GM soybeans were placed in the center as a pollen donor and non-GM soybeans were placed in four directions as the pollen receivers. Three sizes of pollen donor were designed as $90cm{\times}90cm$, $180cm{\times}180cm$, and $360cm{\times}360cm$. A total 22,719 seeds were collected from non-GM soybeans, and 14 hybrids were finally obtained through herbicide resistance screening and PCR analysis. The highest hybridization rate was 0.78% at a distance of 15 cm from a $360cm{\times}360cm$ GM pollen donor, and the farthest distance of hybridization was 180 cm from a GM pollen donor which was $360cm{\times}360cm$ in size. Ten hybrids were found among the 14 hybrids at the $360cm{\times}360cm$ pollen donor size, 3 hybrids at $180cm{\times}180cm$, 1 hybrid at $90cm{\times}90cm$. From these results, it could be concluded that with the larger pollen donor size, more hybridization occurred in soybeans.