• Title/Summary/Keyword: Genetic theory

Search Result 294, Processing Time 0.032 seconds

Theoretical Models of Causative Factors in Depression : A Review of the Literature for Nursing (우울 발생요인에 관한 이론적 고찰)

  • 김수지;고성희
    • Journal of Korean Academy of Nursing
    • /
    • v.19 no.2
    • /
    • pp.173-190
    • /
    • 1989
  • This literature review was undertaken to explore theoretical models of depression for their potential usefulness in nursing research and practice. Depression has bean accounted for by numerous theories or models of causation ; 11 theories selected from psychology, medicine and psychoanalysis and supported by empirical or experimental research were reviewed. These theories identify a variety of precipitating and predisposing factors that may affect the individual's depression. Aggression - turned - inward theory, object loss theory, ego functioning theory, personality organization theory, behavioral theory, learned helplessness theory, cognitive theory, genetic factors, and biological theories conceptualize predisposing factors. Only life stressors theory identifies precipitating facotrs. Each of these theories contributes to an understanding of depression, but many of them use overlapping and interrelated factors. It is also evident from recent. research that there are multiple causes for depression involving an interactive effect among predisposing and precipitating factors that are both biological and psychological in origin. That is, a single theory is not useful, but perhaps a unified theory could be developed that would be helpful to nursing. This review points to the need for continuing development and testing of theories that would integrate the multiple conceptualizations of depression.

  • PDF

Fitness Change of Mission Scheduling Algorithm Using Genetic Theory According to the Control Constants (유전 이론을 이용한 위성 임무 스케줄링 알고리즘의 제어상수에 따른 적합도 변화 연구)

  • Cho, Kyeum-Rae;Baek, Seung-Woo;Lee, Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.572-578
    • /
    • 2010
  • In this paper, the final fitness results of the satellite mission scheduling algorithm, which is designed by using the genetic algorithm, are simulated and compared with respect to the control constants. Heuristic algorithms, including the genetic algorithm, are good to find global optima, however, we have to find the optimal control constants before its application to a problem, because the algorithm is strongly effected by the control constants. In this research, the satellite mission scheduling algorithm is simulated with different crossover probability and mutation probability, which is major control constant of the genetic algorithm.

Development of Genetic Algorithms for Efficient Constraints Handling (구속조건의 효율적인 처리를 위한 유전자 알고리즘의 개발)

  • Cho, Young-Suk;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.725-730
    • /
    • 2000
  • Genetic algorithms based on the theory of natural selection, have been applied to many different fields, and have proven to be relatively robust means to search for global optimum and handle discontinuous or even discrete data. Genetic algorithms are widely used for unconstrained optimization problems. However, their application to constrained optimization problems remains unsettled. The most prevalent technique for coping with infeasible solutions is to penalize a population member for constraint violation. But, the weighting of a penalty for a particular problem constraint is usually determined in the heuristic way. Therefore this paper proposes, the effective technique for handling constraints, the ranking penalty method and hybrid genetic algorithms. And this paper proposes dynamic mutation tate to maintain the diversity in population. The effectiveness of the proposed algorithm is tested on several test problems and results are discussed.

  • PDF

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

Feature Selection by Genetic Algorithm and Information Theory (유전자 알고리즘과 정보이론을 이용한 속성선택)

  • Cho, Jae-Hoon;Lee, Dae-Jong;Song, Chang-Kyu;Kim, Yong-Sam;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.94-99
    • /
    • 2008
  • In the pattern classification problem, feature selection is an important technique to improve performance of the classifiers. Particularly, in the case of classifying with a large number of features or variables, the accuracy of the classifier can be improved by using the relevant feature subset to remove the irrelevant, redundant, or noisy data. In this paper we propose a feature selection method using genetic algorithm and information theory. Experimental results show that this method can achieve better performance for pattern recognition problems than conventional ones.

Design of Gas Identification System with Hierarchical Rule base using Genetic Algorithms and Rough Sets (유전 알고리즘과 러프 집합을 이용한 계층적 식별 규칙을 갖는 가스 식별 시스템의 설계)

  • Bang, Yonug-Keun;Byun, Hyung-Gi;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1164-1171
    • /
    • 2012
  • Recently, machine olfactory systems as an artificial substitute of the human olfactory system are being studied actively because they can scent dangerous gases and identify the type of gases in contamination areas instead of the human. In this paper, we present an effective design method for the gas identification system. Even though dimensionality reduction is the very important part, in pattern analysis, We handled effectively the dimensionality reduction by grouping the sensors of which the measured patterns are similar each other, where genetic algorithms were used for combination optimization. To identify the gas type, we constructed the hierarchical rule base with two frames by using rough set theory. The first frame is to accept measurement characteristics of each sensor and the other one is to reflect the identification patterns of each group. Thus, the proposed methods was able to accomplish effectively dimensionality reduction as well as accurate gas identification. In simulation, we demonstrated the effectiveness of the proposed methods by identifying five types of gases.

Convergence Enhanced Successive Zooming Genetic Algorithm far Continuous Optimization Problems (연속 최적화 문제에 대한 수렴성이 개선된 순차적 주밍 유전자 알고리듬)

  • Gwon, Yeong-Du;Gwon, Sun-Beom;Gu, Nam-Seo;Jin, Seung-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.406-414
    • /
    • 2002
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is Proposed for identifying a global solution for continuous optimization problems. In order to improve the local fine-tuning capability of GA, we introduced a new method whereby the search space is zoomed around the design point with the best fitness per 100 generation. Furthermore, the reliability of the optimized solution is determined based on the theory of probability. To demonstrate the superiority of the proposed algorithm, a simple genetic algorithm, micro genetic algorithm, and the proposed algorithm were tested as regards for the minimization of a multiminima function as well as simple functions. The results confirmed that the proposed SZGA significantly improved the ability of the algorithm to identify a precise global minimum. As an example of structural optimization, the SZGA was applied to the optimal location of support points for weight minimization in the radial gate of a dam structure. The proposed algorithm identified a more exact optimum value than the standard genetic algorithms.

A GENETIC ALGORITHM BY USE OF VIRUS EVOLUTIONARY THEORY FOR SCHEDULING PROBLEM

  • Saito, Susumu
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.365-370
    • /
    • 2001
  • The genetic algorithm that simulates the virus evolutionary theory has been developed applying to combinatorial optimization problems. The algorithm in this study uses only one individual and a population of viruses. The individual is attacked, inflected and improved by the viruses. The viruses are composed of flour genes (a pair of top gene and a pair of tail gene). If the individual is improved by the attacking, the inflection occurs. After the infection, the tail genes are mutated. If the same virus attacks several times and fails to inflect, the top genes of the virus are mutated. By this mutation, the individual can be improved effectively. In addition, the influence of the immunologic mechanism on evolution is simulated.

  • PDF

Design of Gas Identification System with Hierarchically Identifiable Rule base using GAS and Rough Sets (유전알고리즘과 러프집합을 이용한 계층적 식별 규칙을 갖는 가스 식별 시스템의 설계)

  • Haibo, Zhao;Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.37-43
    • /
    • 2011
  • In pattern analysis, dimensionality reduction and reasonable identification rule generation are very important parts. This paper performed effectively the dimensionality reduction by grouping the sensors of which the measured patterns are similar each other, where genetic algorithms were used for combination optimization. To identify the gas type, this paper constructed the hierarchically identifiable rule base with two frames by using rough set theory. The first frame is to accept measurement characteristics of each sensor and the other one is to reflect the identification patterns of each group. Thus, the proposed methods was able to accomplish effectively dimensionality reduction as well as accurate gas identification. In simulation, this paper demonstrated the effectiveness of the proposed methods by identifying five types of gases.

  • PDF

Active Noise Control In a Cylindrical Cavity (원통형 밀폐공간 내부의 능동소음제어)

  • Lee, Ho-Jun;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2302-2312
    • /
    • 2000
  • An active control of the transmission of noise through an aircraft fuselage is investigated numerically. A cylinder-cavity system was used as a model for this study. The fuselage is modeled as a fi nite, thin shel cylinder with constant thickness. The sound field generated by an exterior monopole source is transmitted into the cavity through the cylinder. Point force actuators on the cylinder are driven by error sensor that is placed in 3D cavity. Modal coupling theory is used to formulate the numerical models and describe the system behavior. Minimization of the acoustic potential energy in the fuselage is carried out as a performance index. Continuous parameter genetic algorithm is used to search the optimal actuator position and both results are compared.