• Title/Summary/Keyword: Genetic theory

Search Result 294, Processing Time 0.029 seconds

Time Series Perturbation Modeling Algorithm : Combination of Genetic Programming and Quantum Mechanical Perturbation Theory (시계열 섭동 모델링 알고리즘 : 운전자 프로그래밍과 양자역학 섭동이론의 통합)

  • Lee, Geum-Yong
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.277-286
    • /
    • 2002
  • Genetic programming (GP) has been combined with quantum mechanical perturbation theory to make a new algorithm to construct mathematical models and perform predictions for chaotic time series from real world. Procedural similarities between time series modeling and perturbation theory to solve quantum mechanical wave equations are discussed, and the exemplary GP approach for implementing them is proposed. The approach is based on multiple populations and uses orthogonal functions for GP function set. GP is applied to original time series to get the first mathematical model. Numerical values of the model are subtracted from the original time series data to form a residual time series which is again subject to GP modeling procedure. The process is repeated until predetermined terminating conditions are met. The algorithm has been successfully applied to construct highly effective mathematical models for many real world chaotic time series. Comparisons with other methodologies and topics for further study are also introduced.

Reconceptualization of Histo-Genetic Principle (역사발생적 원리의 재개념화)

  • Yoo, Yoon Jae
    • Journal for History of Mathematics
    • /
    • v.26 no.5_6
    • /
    • pp.389-400
    • /
    • 2013
  • The article makes a discussion to conceptualize a histo-genetic principle in the real historical view point. The classical histo-genetic principle appeared in 19th century was founded by the recapitulation law suggested by biologist Haeckel, but recently it was shown that the theory on it is no longer true. To establish the alternative rationale, several metaphoric characterizations from the history of mathematics are suggested: among them, problem solving, transition of conceptual knowledge to procedural knowledge, generalization, abstraction, circulation from phenomenon to substance, encapsulation to algebraic representation, change of epistemological view, formation of algorithm, conjecture-proof-refutation, swing between theory and application, and so on.

Decision-making Method of Optimum Inspection Interval for Plant Maintenance by Genetic Algorithms (유전 알고리즘에 의한 플랜트 보전을 위한 최적검사기간 결정 방법론)

  • 서광규;서지한
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • The operation and management of a plant require proper accounting for the constraints coming from reliability requirements as well as from budget and resource considerations. Most of the mathematical methods to decide the inspection time interval for plant maintenance by reliability theory are too complicated to be solved. Moreover, the mathematical and theoretical models are not usually cases in the practical applications. In order to overcome these problems, we propose a new the decision-making method of optimal inspection interval to minimize the maintenance cost by reliability theory and genetic algorithm (GA). The most merit of the proposed method is to decide the inspection interval for a plant machine of which failure rate $\lambda$(t) conforms to any probability distribution. Therefore, this method is more practical. The efficiency of the proposed method is verified by comparing the results obtained by GA-based method with the inspection model haying regular time interval.

Search for Adsorption Coordination of SiH4 or Al(CH3)3 on Si (001) Surface Using Genetic Algorithm and Density Functional theory (유전 알고리즘과 밀도 범함수 이론을 이용한 Si (001) 표면에서의 SiH4 또는 Al(CH3)3 전구체의 흡착 배위 탐색)

  • Kim, Hyun-Kyu;Kim, Jason;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.16-22
    • /
    • 2021
  • We search for an appropriate initial adsorption coordination of precursor on surface by using genetic algorithm (GA) and density functional theory. SiH4 and Al(CH3)3 as precursor, and OH-terminated Si (001) as surface are used for this study. Selection, crossover, and mutation as hyperparameters of GA are applied to search for the adsorption coordination of the precursors on the surface as a function of generation. Bond distances between precursors and the surface are used to explain the adsorption behavior of the precursors.

Optimized Bankruptcy Prediction through Combining SVM with Fuzzy Theory (퍼지이론과 SVM 결합을 통한 기업부도예측 최적화)

  • Choi, So-Yun;Ahn, Hyun-Chul
    • Journal of Digital Convergence
    • /
    • v.13 no.3
    • /
    • pp.155-165
    • /
    • 2015
  • Bankruptcy prediction has been one of the important research topics in finance since 1960s. In Korea, it has gotten attention from researchers since IMF crisis in 1998. This study aims at proposing a novel model for better bankruptcy prediction by converging three techniques - support vector machine(SVM), fuzzy theory, and genetic algorithm(GA). Our convergence model is basically based on SVM, a classification algorithm enables to predict accurately and to avoid overfitting. It also incorporates fuzzy theory to extend the dimensions of the input variables, and GA to optimize the controlling parameters and feature subset selection. To validate the usefulness of the proposed model, we applied it to H Bank's non-external auditing companies' data. We also experimented six comparative models to validate the superiority of the proposed model. As a result, our model was found to show the best prediction accuracy among the models. Our study is expected to contribute to the relevant literature and practitioners on bankruptcy prediction.

Fuzzy Modeling by Genetic Algorithm and Rough Set Theory (GA와 러프집합을 이용한 퍼지 모델링)

  • Joo, Yong-Suk;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.333-336
    • /
    • 2002
  • In many cases, fuzzy modeling has a defect that the design procedure cannot be theoretically justified. To overcome this difficulty, we suggest a new design method for fuzzy model by combining genetic algorithm(GA) and mush set theory. GA, which has the advantages is optimization, and rule base. However, it is some what time consuming, so are introduce rough set theory to the rule reduction procedure. As a result, the decrease of learning time and the considerable rate of rule reduction is achieved without loss of useful information. The preposed algorithm is composed of three stages; First stage is quasi-optimization of fuzzy model using GA(coarse tuning). Next the obtained rule base is reduced by rough set concept(rule reduction). Finally we perform re-optimization of the membership functions by GA(fine tuning). To check the effectiveness of the suggested algorithm, examples for time series prediction are examined.

  • PDF

A Fast Anti-jamming Decision Method Based on the Rule-Reduced Genetic Algorithm

  • Hui, Jin;Xiaoqin, Song;Miao, Wang;Yingtao, Niu;Ke, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4549-4567
    • /
    • 2016
  • To cope with the complex electromagnetic environment of wireless communication systems, anti-jamming decision methods are necessary to keep the reliability of communication. Basing on the rule-reduced genetic algorithm (RRGA), an anti-jamming decision method is proposed in this paper to adapt to the fast channel variations. Firstly, the reduced decision rules are obtained according to the rough set (RS) theory. Secondly, the randomly generated initial population of the genetic algorithm (GA) is screened and the individuals are preserved in accordance with the reduced decision rules. Finally, the initial population after screening is utilized in the genetic algorithm to optimize the communication parameters. In order to remove the dependency on the weights, this paper deploys an anti-jamming decision objective function, which aims at maximizing the normalized transmission rate under the constraints of minimizing the normalized transmitting power with the pre-defined bit error rate (BER). Simulations are carried out to verify the performance of both the traditional genetic algorithm and the adaptive genetic algorithm. Simulation results show that the convergence rates of the two algorithms increase significantly thanks to the initial population determined by the reduced-rules, without losing the accuracy of the decision-making. Meanwhile, the weight-independent objective function makes the algorithm more practical than the traditional methods.

Model study for genetic research of Sasang constitution confirmation method (유전학을 이용한 사상체질 감별법 개발 모델의 연구)

  • An, Hwang yong;Lee, Yong heun;Lim, Nam kyu;Kim, Dong hee;Park, Jong oh
    • Journal of Haehwa Medicine
    • /
    • v.13 no.1
    • /
    • pp.89-96
    • /
    • 2004
  • The Sasang constitutional medicine, a traditional Korean medical typology, was initially proposed to the oriental medical field in 1894 by the Korean Confucian scholar Jae-Ma Lee. The key principle of his theory is that all humans can be categorized into four groups (Tae-Yang, Tae-Eum, So-Yang, and So-Eum) based on the function of major organs such as the heart, liver, kidney and lungs as well as other characteristics of the body. Now there are many scientists that try to confirm the method to classify the four group using genetics. In this study, we hypothesized that some genes are may associated with Sasang constitution on the basis of the theory of Jae-Ma Lee who insist everybody can be divided from the birth and can not be changed during the life. Before the genetic research, we first suggest the genetic research model. It may be effective to carry out genetic research concerned with Sasang constitution.

  • PDF

Optimization and Verification of Parameters Used in Successive Zooming Genetic Algorithm (순차적 주밍 유전자 알고리즘 기법에 사용되는 파라미터의 최적화 및 검증)

  • KWON YOUNG-DOO;KWON HYUN-WOOK;KIM JAE-YONG;JIN SEUNG-BO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.29-35
    • /
    • 2004
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is proposed for identifying a global solution, using continuous zooming factors for optimization problems. In order to improve the local fine-tuning of the GA, we introduced a new method whereby the search space is zoomed around the design variable with the best fitness per 100 generation, resulting in an improvement of the convergence. Furthermore, the reliability of the optimized solution is determined based on the theory of probability, and the parameter used for the successive zooming method is optimized. With parameter optimization, we can eliminate the time allocated for deciding parameters used in SZGA. To demonstrate the superiority of the proposed theory, we tested for the minimization of a multiple function, as well as simple functions. After testing, we applied the parameter optimization to a truss problem and wicket gate servomotor optimization. Then, the proposed algorithm identifies a more exact optimum value than the standard genetic algorithm.

Design of a Controller for a Flexible Manipulator Using Fuzzy Theory and Genetic Algorithm (피지이론과 유전알고리츰의 합성에 의한 Flexible Manipulator 제어기 설계)

  • Lee, Kee-Seong;Cho, Hyun-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • A position control algorithm for a flexible manipulator is studied. The proposed algorithm is based on a fuzzy theory with a Steady State Genetic Algorithm(SSGA) and an Adaptive Genetic Algorithms(AGA). The proposed controller for a flexible manipulator have decreased 90.8%, 31.8%, 31.3% in error when compared with a conventional fuzzy controller, fuzzy controller using neural network, fuzzy controller using evolution strategies, respectively when the weight and the velocity of end-point are 0.8k9 and 1m/s, respectively.