• Title/Summary/Keyword: Genetic theory

Search Result 294, Processing Time 0.031 seconds

Investigation of Genetic Evidence for Sasang Constitution Types in South Korea

  • Lee, Mi-Kyeong;Jang, Eun-Su;Sohn, Ho-Young;Park, Jeong-Yeon;Koh, Byung-Hee;Sung, Joo-Hon;Kim, Jong-Il;Kim, Jong-Yeol;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.107-110
    • /
    • 2009
  • In Sasang constitutional medicine, both disease susceptibility and drug response are considered to be related to the characteristics of an individual's physiology and psychology: a theory which is central to traditional Korean medicine. Based on such observable characteristics, Sasang constitutional medicine classifies people into four constitutional types. Genetic studies of Sasang constitution would help reveal the inheritance patterns and models of the typological traits and, moreover, help with traditional medical diagnosis and treatment. To investigate the heritable aspect of Sasang constitution, we collected various pedigrees from South Korea. The study population has 101 pedigrees composed of 593 individuals. The determination of the Sasang constitution type of each individual was performed by doctors who diagnose the Sasang constitutional type of individuals as part of their professional practice. We calculated estimates of familial correlation and heritability. Parent-Offspring pairs showed the strongest familial correlation of Sasang constitutional type, with the correlation values of 0.21 and 0.28, followed by sibling pairs with the value ranging between 0.14 and 0.25. From the heritability analysis conducted with the Variance-Component method, the heritability of TE (Tae-Eum) type, SY (So-Yang) type, and SE (So-Eum) type were 55%, 41%, and 47%, respectively. This pattern of heritability was consistent with different set of analyses, which suggest the robustness of our result. Our result clearly shows that the Sasang constitution type is heritable, and further genetic analysis based on our result will shed light on the biological mechanism of Sasang constitution.

Nanoaperture Design in Visible Frequency Range Using Genetic Algorithm and ON/OFF Method Based Topology Optimization Scheme (유전알고리즘 및 ON/OFF 방법을 이용한 가시광선 영역의 나노개구 형상의 위상최적설계)

  • Shin, Hyun Do;Yoo, Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1513-1519
    • /
    • 2013
  • A genetic algorithm (GA) is an optimization technique based on natural evolution theory to find the global optimal solution. Unlike the gradient-based method, it can design nanoscale structures in the electric field because it does not require sensitivity calculation. This research intends to design a nanoaperture with an unprecedented shape by the topology optimization scheme based on the GA and ON/OFF method in the visible frequency range. This research mainly aims to maximize the transmission rate at a measuring area located 10nm under the exit plane and to minimize the electric distribution at other locations. The finite element analysis (FEA) and optimization process are performed by using the commercial package COMSOL combined with the Matlab programming. The final results of the optimized model are analyzed by a comparison of the electric field intensity and the spot size of near field with those of the initial model.

Optimization of Early-phase Ship Design using Set-Based Design and Genetic Algorithm (집합기반설계와 유전자알고리즘을 이용한 초기단계 함정설계 최적화)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.486-492
    • /
    • 2019
  • The system-based approach is needed to select an optimal mix of weapon systems and ship platform among a variety of design alternatives with the uncertainties of the initial required operational capability. In the early-phase design, which included a feasibility study and concept design, it is possible to cause problems when a review of the operational concept, database development, and systematic design are not done, thereby producing uncertain and unstable requirements. To select the best solution without trial-and-error, the U.S. navy has applied the set-based method for the early-phase design of a new ship-to-shore connector. The ship synthesis model plays an important role in applying the set-based method, but only a few countries possess this model and have prohibited this model from being transferred to other countries. This paper suggests a set-based method using a genetic algorithm and decision-making theory through benchmarking existing ship data. The algorithm was verified using the DDG-51 class ship synthesis model to optimize the weapon system design, which has been released for research purposes.

Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape

  • Yi, Jin-Hak;Yoon, Gil-Lim;Li, Ye
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.195-213
    • /
    • 2014
  • Recently, the horizontal axis rotor performance optimizer (HARP_Opt) tool was developed in the National Renewable Energy Laboratory, USA. This innovative tool is becoming more popular in the wind turbine industry and in the field of academic research. HARP_Optwas developed on the basis of two fundamental modules, namely, WT_Perf, a performance evaluator computer code using the blade element momentum theory; and a genetic algorithm module, which is used as an optimizer. A pattern search algorithm was more recently incorporated to enhance the optimization capability, especially the calculation time and consistency of the solutions. The blade optimization is an aspect that is highly dependent on experience and requires significant consideration on rotor control strategies, wind data, and generator type. In this study, the effects of rotor control strategies including fixed speed and fixed pitch, variable speed and fixed pitch, fixed speed and variable pitch, and variable speed and variable pitch algorithms on optimal blade shapes and rotor performance are investigated using optimized blade designs. The effects of environmental wind data and the objective functions used for optimization are also quantitatively evaluated using the HARP_Opt tool. Performance indices such as annual energy production, thrust, torque, and roof-flap moment forces are compared.

A Study on the Archaeological Approach in Korean Traditional Space Design - Focusing on the Archaeological Statement of Foucault - (한국 전통공간디자인의 고고학적 접근에 관한 연구 - 푸코의 고고학적 언표를 중심으로 -)

  • Park, Kyung-Ae;Park, Young-Mok
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • This study is about Foucault's conceptual and methodological relevance for structural analysis of Korean traditional space design history. By Foucault's Theory, regionalism is product of the instrumentality of space, power, knowledge and provide the basis for making the operation of power both spatial and temporal. The purpose of this study is to establish topographical map of historical progress and to shed new light on the forming of identity in Korean traditional space design on the poststructural-archaeological aspect. The process of this study is illustrated as follows: At first, it suggests Foucault's 'Theory of archaeology'. It mentions 'historical apriori' and archive, collateral space and general grammar as theoretical background of archaeological logic. Secondly, it clarifies 'statements' depending on the conditions that is 'episteme' in which they emerge and exist within a field of discourse. And it discuss Korean traditional space design concept as a social product on the situated character of interaction in time-space. Finally, it studies genetic variation process of Korean traditional space design based on the social progress in Korean society. And it analyses practical actions of 'Statements' in terms of general grammar and textuality.

Theory for Health for Optimal Fitness in Health Care for High-Risk Children (고위험아동의 건강관리를 위안 최적적응건강이론)

  • Ahn, Young-Mee
    • Child Health Nursing Research
    • /
    • v.15 no.1
    • /
    • pp.42-52
    • /
    • 2009
  • Child is a being and provides the genetic continuity of parents and society, and therefore the fitness of these children for survival, growth and development towards reproduction, is of significance to parents and society. The aim of health care for high-risk children is not only to minimize or eliminate health problems, but also to optimize their fitness. Considering that the health care of children is influenced by available resources of parents and society, and sociocultural values and paradigms in a given environment of evolutionary adaptedness (EEA), child health care professionals need to understand factors affecting the optimal fitness of children with risks. This paper introduces a new integrated theory for health care in high-risk children, entitled, Health for Optimal Fitness of High-Risk Children. Five main components were identified with associate concepts or midrange theories affecting heath for optimal fitness of high-risk children; EEA, optimal fitness, health problems, investment resources, and anthropological values. It may provide an integrated perspective on health of high-risk children in both the proximately biomedical approach and ultimately evolutionary approach as optimizing their fitness. Further study is needed to develop substantial statements between components with existential examples.

  • PDF

Blade Design Optimization for 5MW HAWT Considering Wind Environment on Domestic West-South Coast (국내 서남해안 풍황을 고려한 5MW급 수평축 풍력터빈 블레이드의 최적설계)

  • Park, Kyung-Hyun;Jun, Sang-Ook;Jung, Ji-Hun;Cho, Jun-Ho;Lee, Ki-Hak;Lee, Dong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.58.2-58.2
    • /
    • 2011
  • 본 연구에서는 5MW급 수평축 풍력터빈 블레이드에 대해 국내 서남해안의 풍속특성을 고려한 최적설계를 수행 하였다. 최적설계를 수행하기 위해 블레이드 해석은 Blade Element and Momentum Theory를 이용 하였으며, 설계 시 적용된 기저형상은 NREL에서 제안한 5MW급 풍력터빈 블레이드을 선정하였다. 최적설계를 수행하기 전 설계에 사용된 설계변수들이 풍속에 대해 어떠한 경향을 가지고 있는지 알아보기 위해 Parametric Study를 수행 하였으며, 최적설계는 다목적 최적화 유전 알고리즘인 NSGA-II를 이용하여 평균풍속이 낮은 서남해안의 연간에너지 생산량과 설비이용률을 최대화하였다. 최적화 결과들로부터 설계 조건에 맞는 최적해를 도출 할 수 있었으며, 이를 통해 기저형상의 연간에너지 생산량 및 설비이용률을 보다 향상 시킬 수 있었다.

  • PDF

Passive Suppression of Nonlinear Panel Flutter Using Piezoelectric Materials with Resonant Circuit

  • Moon, Seong-Hwan;Yun, Chul-Yong;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • In this study, a passive suppression scheme for nonlinear flutter problem of composite panel, which is believed to be more reliable than the active control methods in practical operations, is proposed. This scheme utilizes a piezoelectric inductor-resistor series shunt circuit. The finite element equations of motion for an electromechanically coupled system is derived by applying the Hamilton\\`s principle. The aerodynamic theory adopted for the present study is based on the quasi-steady piston theory, and von-barman nonlinear strain-displacement relation is also applied. The passive suppression results for nonlinear panel flutter are obtained in the time domain using the Newmark-$\beta$ method. To achieve the best damping effect, optimal shape and location of fille piezoceramic (PZT) patches are determined by using genetic algorithms. The effects of passive suppression are investigated by employing in turn one shunt circuit and two independent shunt circuits. Feasibility studies show that two independent inductor-resistor shunt circuits suppresses flutter more effectively than a single shunt circuit. The results clearly demonstrate that the passive damping scheme that uses piezoelectric shunt circuit can effectively attenuate the flutter.

The Differentiation and Integration of Mind and Body (정신과 신체의 분화와 통합)

  • Yang, Byung-Hwan;Hwang, Hey-Soon
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.8 no.1
    • /
    • pp.110-121
    • /
    • 2000
  • With Cartesian dichotomy, a person's behavior and illness distinguished sharply between "biologically based" phenomena and "psychologically based" phenomena in western country. But a more balanced view that considers both concepts swept into psychiatry in the 1960s and 1970s. And ironically, the revolution of neurosicience and genetics have now reached a level of sophistication that allow it to serve as a bridge between biology and psychosocial environment. So, even subtle changes in the environment can produce biological changes in the brain. We review the history of definitions and relationship of mind and body. And we provide a selective survey of the recent 3 conceptual models of mind-body relationships in general-biopsychosocial model, mental-physical identity theory, organic unity theory-, the relationships of genetic and environment, and stress-diathesis model.

  • PDF

Mitochondria: multifaceted regulators of aging

  • Son, Jyung Mean;Lee, Changhan
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.13-23
    • /
    • 2019
  • Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging.