• 제목/요약/키워드: Genetic techniques

검색결과 749건 처리시간 0.023초

Design of Genetic Algorithm-based Parking System for an Autonomous Vehicle

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.275-280
    • /
    • 2009
  • A Genetic Algorithm (GA) is a kind of search techniques used to find exact or approximate solutions to optimization and searching problems. This paper discusses the design of a genetic algorithm-based intelligent parking system. This is a search strategy based on the model of evolution to solve the problem of parking systems. A genetic algorithm for an optimal solution is used to find a series of optimal angles of the moving vehicle at a parking space autonomously. This algorithm makes the planning simpler and the movement more effective. At last we present some simulation results.

유전알고리즘을 이용한 최적생산설계 (Optimal Production Design Using Genetic Algorithms)

  • 류영근
    • 산업경영시스템학회지
    • /
    • 제22권49호
    • /
    • pp.115-123
    • /
    • 1999
  • An optimization problem is to select the best of many possible design alternatives in a complex design space. Genetic algorithms, one of the numerous techniques to search optimal solution, have been successfully applied to various problems (for example, parameter tuning in expert systems, structural systems with a mix of continuous, integer and discrete design variables) that could not have been readily solved with more conventional computational technique. But, conventional genetic algorithms are ill defined for two classes of problems, ie., penalty function and fitness scaling. Therefore, this paper develops Improved genetic algorithms(IGA) to solve these problems. As a case study, numerical examples are demonstrated to show the effectiveness of the Improved genetic algorithms.

  • PDF

유전자 알고리즘을 이용한 주식투자 수익률 향상에 관한 연구 (A Study to Improve the Return of Stock Investment Using Genetic Algorithm)

  • 조희연;김영민
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제12권2호
    • /
    • pp.1-20
    • /
    • 2003
  • This paper deals with the application of the genetic algorithm to the technical trading rule of the stock market. MACD(Moving Average Convergence & Divergence) and the Stochastic techniques are widely used technical trading rules in the financial markets. But, it is necessary to determine the parameters of these trading rules in order to use the trading rules. We use the genetic algorithm to obtain the appropriate values of the parameters. We use the daily KOSPI data of eight years during January 1995 and October 2002 as the experimental data. We divide the total experimental period into learning period and testing period. The genetic algorithm determines the values of parameters for the trading rules during the teaming period and we test the performance of the algorithm during the testing period with the determined parameters. Also, we compare the return of the genetic algorithm with the returns of buy-hold strategy and risk-free asset. From the experiment, we can see that the genetic algorithm outperforms the other strategies. Thus, we can conclude that genetic algorithm can be used successfully to the technical trading rule.

  • PDF

Evaluation of Genetic Variability in Kenkatha Cattle by Microsatellite Markers

  • Pandey, A.K.;Sharma, Rekha;Singh, Yatender;Prakash, B.;Ahlawat, S.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권12호
    • /
    • pp.1685-1690
    • /
    • 2006
  • Kenkatha cattle, a draft purpose breed, which can survive in a harsh environment on low quality forage, was explored genetically exploiting FAO-suggested microsatellite markers. The microsatellite genotypes were derived by means of the polymerase chain reaction (PCR) followed by electrophoretic separation in agarose gels. The PCR amplicons were visualized by silver staining. The allelic as well as genotypic frequencies, heterozygosities and gene diversity were estimated using standard techniques. A total of 125 alleles was distinguished by the 21 microsatellite markers investigated. All the microsatellites were highly polymorphic with mean allelic number of 5.95${\pm}$1.9 (ranging from 3-10 per locus). The observed heterozygosity in the population ranged between 0.250 and 0.826 with a mean of 0.540${\pm}$0.171, signifying considerable genetic variation. Bottleneck was examined assuming all three mutation models which showed that the population has not experienced bottleneck in recent past. The population displayed a heterozygote deficit of 21.4%. The study suggests that the breed needs to be conserved by providing purebred animals in the breeding tract.

Modeling strength of high-performance concrete using genetic operation trees with pruning techniques

  • Peng, Chien-Hua;Yeh, I-Cheng;Lien, Li-Chuan
    • Computers and Concrete
    • /
    • 제6권3호
    • /
    • pp.203-223
    • /
    • 2009
  • Regression analysis (RA) can establish an explicit formula to predict the strength of High-Performance Concrete (HPC); however, the accuracy of the formula is poor. Back-Propagation Networks (BPNs) can establish a highly accurate model to predict the strength of HPC, but cannot generate an explicit formula. Genetic Operation Trees (GOTs) can establish an explicit formula to predict the strength of HPC that achieves a level of accuracy in between the two aforementioned approaches. Although GOT can produce an explicit formula but the formula is often too complicated so that unable to explain the substantial meaning of the formula. This study developed a Backward Pruning Technique (BPT) to simplify the complexity of GOT formula by replacing each variable of the tip node of operation tree with the median of the variable in the training dataset belonging to the node, and then pruning the node with the most accurate test dataset. Such pruning reduces formula complexity while maintaining the accuracy. 404 experimental datasets were used to compare accuracy and complexity of three model building techniques, RA, BPN and GOT. Results show that the pruned GOT can generate simple and accurate formula for predicting the strength of HPC.

Automatic decomposition of unstructured meshes employing genetic algorithms for parallel FEM computations

  • Rama Mohan Rao, A.;Appa Rao, T.V.S.R.;Dattaguru, B.
    • Structural Engineering and Mechanics
    • /
    • 제14권6호
    • /
    • pp.625-647
    • /
    • 2002
  • Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.

군집분석과 유전자 알고리즘을 활용한 투자자 거래정보 기반 포트폴리오 투자전략 (Using cluster analysis and genetic algorithm to develop portfolio investment strategy based on investor information)

  • 정동현;오경주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권1호
    • /
    • pp.107-117
    • /
    • 2014
  • 본 연구에서는 투자자 거래 정보를 활용한 포트폴리오 투자전략을 제안했다. 포트폴리오를 구성하는 과정에서 군집분석을 활용하여 기대수익이 높은 종목을 선정하고, 유전자 알고리즘으로 포트폴리오를 최적화하여 투자성과를 높이고자 했다. 2007년 4월부터 2013년 6월까지의 국내 주식시장을 대상으로 한 실증분석을 통하여, 본 연구에서 제안한 포트폴리오 투자전략의 유용성과 우수성을 확인 했다. 본 연구의 결과는 특정 투자 주체의 매매행태를 분석하여 투자 의사결정에 이용할 수 있으며, 이를 통하여 높은 투자성과를 얻을 수 있음을 보여준다. 또한 인공지능 기법이 투자 의사결정에 유용하게 사용될 수 있음을 시사한다.

Optimization of the Growth Rate of Probiotics in Fermented Milk Using Genetic Algorithms and Sequential Quadratic Programming Techniques

  • Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.894-902
    • /
    • 2003
  • Prebiotics (peptides, N-acetyglucoamine, fructo-oligosaccharides, isomalto-oligosaccharides and galactooligosaccharides) were added to skim milk in order to improve the growth rate of contained Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium longum and Bifidobacterium bifidum. The purpose of this research was to study the potential synergy between probiotics and prebiotics when present in milk, and to apply modern optimization techniques to obtain optimal design and performance for the growth rate of the probiotics using a response surface-modeling technique. To carry out response surface modeling, the regression method was performed on experimental results to build mathematical models. The models were then formulated as an objective function in an optimization problem that was consequently optimized using a genetic algorithm and sequential quadratic programming approach to obtain the maximum growth rate of the probiotics. The results showed that the quadratic models appeared to have the most accurate response surface fit. Both SQP and GA were able to identify the optimal combination of prebiotics to stimulate the growth of probiotics in milk. Comparing both methods, SQP appeared to be more efficient than GA at such a task.

유전자 알고리즘을 이용한 사례기반추론 시스템의 최적화: 주식시장에의 응용 (Optimization of Case-based Reasoning Systems using Genetic Algorithms: Application to Korean Stock Market)

  • 김경재;안현철;한인구
    • Asia pacific journal of information systems
    • /
    • 제16권1호
    • /
    • pp.71-84
    • /
    • 2006
  • Case-based reasoning (CBR) is a reasoning technique that reuses past cases to find a solution to the new problem. It often shows significant promise for improving effectiveness of complex and unstructured decision making. It has been applied to various problem-solving areas including manufacturing, finance and marketing for the reason. However, the design of appropriate case indexing and retrieval mechanisms to improve the performance of CBR is still a challenging issue. Most of the previous studies on CBR have focused on the similarity function or optimization of case features and their weights. According to some of the prior research, however, finding the optimal k parameter for the k-nearest neighbor (k-NN) is also crucial for improving the performance of the CBR system. In spite of the fact, there have been few attempts to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors to combine. This study applies the novel approach to Korean stock market. Experimental results show that the GA-optimized k-NN approach outperforms other AI techniques for stock market prediction.

Application of Bacterial Foraging Algorithm and Genetic Algorithm for Selective Voltage Harmonic Elimination in PWM Inverter

  • Maheswaran, D.;Rajasekar, N.;Priya, K.;Ashok kumar, L.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.944-951
    • /
    • 2015
  • Pulse Width Modulation (PWM) techniques are increasingly employed for PWM inverter fed induction motor drive. Among various popular PWM methods used, Selective Harmonic Elimination PWM (SHEPWM) has been widely accepted for its better harmonic elimination capability. In addition, using SHEPWM, it is also possible to maintain better voltage regulation. Hence, in this paper, an attempt has been made to apply Bacterial Foraging Algorithm (BFA) for solving selective harmonic elimination problem. The problem of voltage harmonic elimination together with output voltage regulation is drafted as an optimization task and the solution is sought through proposed method. For performance comparison of BFA, the results obtained are compared with other techniques such as derivative based Newton-Raphson method, and Genetic Algorithm. From the comparison, it can be observed that BFA based approach yields better results. Further, it provides superior convergence, reduced computational burden, and guaranteed global optima. The simulation results are validated through experimental findings.