• Title/Summary/Keyword: Genetic similarity matrix

Search Result 45, Processing Time 0.027 seconds

Parentage Identification of 'Daebong' Grape (Vitis spp.) Using RAPD Analysis

  • Kim, Seung-Heui;Jeong, Jae-Hun;Kim, Seon-Kyu;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.67-70
    • /
    • 2002
  • The RAPD data were used to assess genetic similarity among f grape cultivars. Of the 100 random primers tested on genomic DNA, 10 primers could be selected for Benetic analysis, and the selected primers generated a total of 115 distinct amplification fragments. A similarity matrix was constructed on the basis of the presence or absence of bands. The 7 grape cultivars analyzed with UPGMA were clustered into two groups of A and B. The similarity coefficient value of cultivars was high. The mean similarity index for all pairwise comparisons was 0.851, and ranged from 0.714 ('Rosaki' and 'Black Olympia') to 0.988 ('Kyoho' and 'Daebong'). After due consideration of differences in cultural and morphological characteristics of these two theoretically identical cultivars, it could be deduced that 'Daebong' is a bud sport of 'Kyoho' cultivar.

Genetic Diversity of Barley Cultivars as Revealed by SSR Masker

  • Kim, Hong-Sik;Park, Kwang-Geun;Baek, Seong-Bum;Suh, Sae-Jung;Nam, Jung-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.379-383
    • /
    • 2002
  • Allelic diversity of 44 microsatellite marker loci originated from the coding regions of specific genes or the non-coding regions of barley genome was analyzed for 19 barley genotypes. Multi-allelic variation was observed at the most of marker loci except for HVM13, HVM15, HVM22, and HVM64. The number of different alleles ranged from 2 to 12 with a mean of 4.0 alleles per micro-satellite. Twenty-one alleles derived from 10 marker loci are specific for certain genotypes. The level of polymorphism (Polymorphic Information Content, PIC) based on the band pattern frequencies among genotypes was relatively high at the several loci such as HVM3, HVM5, HVM14, HVM36, HVM62 and HVM67. In the cluster analysis using genetic similarity matrix calculated from microsatellite-derived DNA profiles, two major groups were classified and the spike-row type was a major factor for clustering. Correlation between genetic similarity matrices based on microsatellite markers and pedigree data was highly significant ($r=0.57^{**}$), but these two parameters were moderately associated each other. On the other hand, RAPD-based genetic similarity matrix was more highly associated with microsatellite-based genetic similarity ($r=0.63^{**}$) than coefficient of parentage.

Genetic Diversity and Relationship Analysis of Taraxacum officinale Weber and Taraxacum coreanum Nakai Accessions Based on Inter-Simple Sequence Repeats (ISSR) Markers (ISSR 표지에 의한 서양민들레와 흰민들레 수집종의 유전적 다양성 및 유연관계 분석)

  • Ryu, Jai-Hyunk;Bae, Chang-Hyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • The genetic diversity and the genetic relationship among 30 genetic resources of T. officinale and T. coreanum collected from 20 regions in Korea were evaluated by using ISSR markers. Out of 127 loci detected overall, 122 were identified to be polymorphic with a rate of 96.0% at the 30 individuals. The intraspecific polymorphism between T. officinale and T. coreanum was 92.6% and 88.2%, respectively. The genetic similarity matrix (GSM) revealed a wide range of variablility among the 30 accessions, spanning from 0.179 to 922. According to the clustering analysis, different species T. officinale and T. coreanum, were divided into independent groups and all of the accessions could be classified into 7 categories. Especially, all of the mountain collected accessions belonged to independent groups. The study findings indicate that T. officinale and T. coreanum accessions have a high genetic diversity and accordingly carry a germ-plasm qualifying as good genetic resources for breeding.

Genetic Diversity and Relationship Analysis of Genus Taraxacum Accessions Collected in Korea

  • Ryu, Jai-Hyunk;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.25 no.3
    • /
    • pp.329-338
    • /
    • 2012
  • Genus Taraxacum has been widely used as a folkloric medicine for treatment of diverse diseases. The genetic diversity and relationship among 32 accessions belonging to five Taraxacum species (T. mongolicum T. coreanum, T. coreanum var. flavescens, T. officinale and T. laevigatum) which collected from field, mountain, island and seaside of Korea were evaluated using ISSR markers. A total of 142 ISSR loci detected in the overall species were all polymorphic loci (100%) and interspecies polymorphisms obtained from Korean native and naturalized species were 98.2% and 94.5%, respectively. The genetic similarity matrix (GSM) among 32 accessions ranged from 0.025 to 0.860 with an average of 0.303. According to the clustering analysis, the Korean native species and naturalized species were divided two major clusters. In addition, the different species were divided into independent groups except for the T. coreanum and T. coreanum var. flavescens, and all the 32 accessions could be classified into 7 categories. The study findings indicate that Taraxacum accessions have a high genetic diversity and the dandelion accessions as breeding materials can be effectively utilized for the improvement of Taraxacum breeding.

Genetic Relationahips of the Two Morphorogical Types of Myzus persicae(Homoptera:Aphididae) Collected from Tobacco Plants Based on Random Amplified Polymorphic DNA(RAPD) (연초에서 발생하는 복숭아혹진딧물(Myzus persicae)형태형 2종의 Random Amplified Polymorphic DNA(RAPD)을 이용한 유전적 유연관계 분석)

  • 채순용;이기원;김상석;장영덕
    • Korean journal of applied entomology
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 1998
  • Random amplified polymorphic DNA (RAPD) markers were used to analyze genetic similarity among 8 clones of apierous green peach aphid, two types (M. persicae Sulzer and M. nicotianae lack man) classified by their mo~hologi~cahla raters and host preference (Blackman, 1987), collected from tobacco plants. The genetic variation among these clones was evaluated by polymerase chain reaction amplification with 20 random primers. The higher GC contents of primers, the better in amplification efficiency of PCR reaction in general. The genetic similarities among eight aphid clones were analyzed from UPGMA (unweighted pair group average method) cluster analysis based on simple matching coefficient. The range of genetic similarity coefficients was 0.414 to 0.808. The most close relationship among the clones was similarity coefficient of 0.808 between the PG2 and the PG3 clone. The eight aphid clones analyzed were clustered into three groups by the genetic similarity coefficient. The first group, PG1, PG2, PG3 clone including in M. persicae type by their morphological characters and RED clone in M. nicotianae type was clustered at the genetic similarity coefficient of 0.643. The second group, GR1, GR2, BRN in M. nicotianae type was at the 0.636;and the third group was DBR clone in M. persicae type. The results did not indicate any correlation between m&-phological types (M. persicae and M. nicotianae) and RAPD polymorphism. We could not detect any obvious genetic relationships of the two morphological types of the green peach aphid collected from tobacco plants.

  • PDF

Application of RAPD markers for characterization of ${\gamma}$-ray-induced rose mutants and assessment of genetic diversity

  • Chakrabarty, D.;Datta, S.K.
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.237-242
    • /
    • 2010
  • Six parent and their 12 gamma ray-induced somatic flower colour mutants of garden rose were characterized to discriminate the mutants from their respective parents and understanding the genetic diversity using Random amplification of polymorphic DNA (RAPD) markers. Out of 20 primers screened, 14 primers yielded completely identical fragments patterns. The other 7 primers gave highly polymorphic banding patterns among the radiomutants. All the cultivars were identified by using only 7 primers. Moreover, individual mutants were also distinguished by unique RAPD marker bands. Based on the presence or absence of the 48 polymorphic bands, the genetic variations within and among the 18 cultivars were measured. Genetic distance between all 18 cultivars varied from 0.40 to 0.91, as revealed by Jaccard's coefficient matrix. A dendrogram was constructed based on the similarity matrix using the Neighbor Joining Tree method showed three main clusters. The present RAPD analysis can be used not only for estimating genetic diversity present in gamma ray-induced mutants but also for correct identification of mutant/new varieties for their legal protection under plant variety rights.

Genetic Distances in Three Ascidian Species determined by PCR Technique

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.20 no.4
    • /
    • pp.379-385
    • /
    • 2016
  • Seven oligonucleotides primers were shown to generate the shared loci, specific loci, unique shared loci to each species and shared loci by the three species which could be obviously scored. In the present study, 7 oligonucleotides primers produced 401 total loci in the Styela clava (SC) species, 390 in the Halocynthia roretzi (HR) and 434 in the Styela plicata (SP), respectively. Seven oligonucleotides primers generated 275 specific loci in the SC, 341 in the HR and 364 in the SP species, respectively. The oligonucleotides primer BION-23 generated 28 unique loci to each species in the SP species. Especially, the oligonucleotides primer BION-25 produced 7 unique loci to each species, which were identifying each species in the SP species. BION-17 distinguished 21 shared loci by the three ascidian species, major and/or minor fragments of sizes, which were identical in almost all of the samples. Based on the average bandsharing values of all samples, the similarity matrix ranged from 0.519 to 0.774 in the SC species, from 0.261 to 0.683 in the HR species and from 0.346 to 0.730 in the SP species. As regards average bandsharing value (BS) results, individuals from SC species ($0.661{\pm}0.081$) exhibited higher bandsharing values than did individuals from HR species ($0.555{\pm}0.074$) (P<0.05). The dendrogram obtained by the seven oligonucleotides primers indicates three genetic groups. In three ascidian species, the shortest genetic distance (0.071) exhibiting significant molecular difference was also between individual no. 20 and no. 21 within the SP species.

Evaluation of ISSR and RAPD Markers for the Detection of Genetic Diversity in Mulberry (Morus spp.)

  • Venkateswarlu, M.;Nath, B.Surendra;Saratchandra, B.;Urs, S.Raje
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2004
  • The present study was carried out to evaluate the ISSR and RAPD markers for their efficiency as genetic marker systems to establish the relationships between 18 mulberry genotypes. A total of 36 from 56 (64%) RAPD primers and 12 from 48 (25%) ISSR primers produced reproducible amplification patterns. A high proportion of polymorphic bands ranging from 44 to 91% was observed respectively with RAPD and ISSR markers. The average Resolving Power (Rp) of ISSR primers was higher than RAPD primers. The ISSR primers, UBC 825, 868 and 873, and RAPD primers, UBC 712, 720 and 729, possessed the highest Rp values and could in each instance distinguish all the 18 genotypes. Similarity matrix values were estimated based on Jaccards coefficient, considering 109 polymorphic ISSR and 212 polymorphic RAPD bands and two dendrograms were constructed. The dendrograms obtained with ISSR and RAPD markers distinguished the eight exotic genotypes from the ten indigenous (Indian) genotypes. A significant correlation value (r=0.959; p=0.001) for the cophenetic matrix between the RAPD and ISSR matrices was observed. The results indicated that the ISSR and RAPD markers could assist in the differentiation of genotypes and permit the determination of genetic distances that might be exploited by mulberry breeders in improvement programs.

Bandsharing Values and Genetic Distances of Two Wild Shortnecked Clam, Ruditapes philippinarum Populations from the Yellow Sea Assessed by Random Amplified Polymorphic DNAs-Polymerase Chain Reaction

  • Yoon, Jong-Man;Kim, Yong-Ho
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.12-23
    • /
    • 2004
  • Genomic DNAs were extracted from the muscle of twenty-two specimens of two shortnecked clam, Ruditapes phifippinarum populations collected in Anmyeondo and Seocheon. Genetic differences within and between populations were analysed by random amplified polymorphic DNAs-polymerase chain reaction (RAPD-PCR) using twenty arbitrary decamer primers. Out of 20 primers, 6 generated a total of 1,111 major and minor RAPD bands from individuals of two sites, producing approximately 4.2 average polymorphic bands per primer in individuals from Anmyeondo and ranging in size from less than 50 to larger than 1,500 base pairs (bp). The electrophoretic analysis of RAPD products amplified showed moderate levels of similarity among the different individuals in Seo-cheon population. The average bandsharing values (BS value) of the samples within population from Anmyeondo ranged from 0.155 to 0.684, whereas it was 0.143∼0.782 within population from Seocheon. The average BS value between individuals No. 13 and No. 14 from Seocheon was 0.782 which was higher than that of those from Anmyeondo. The single linkage dendrogram resulted from three primers (OPA-08, -09 and -20), indicating six genetic groupings composed of group 1 (No.4, 8 and 10), group 2 (No. 18), group 3 (No.2, 5 and 7), group 4 (No. 1, 3, 6, 9, 11, 12, 13, 14, 15 and 17), group 5 (16, 19 and 20) and group 6 (No. 21 and 22). In the Seocheon population, the individual No. 18 clustered distinctly from the others of this population. The observed genetic distance between the two populations from Anmyeondo and Seocheon was more than 0.209 (0.247 and 0.275). The shortest genetic distance (0.094) displaying significant molecular differences was between individuals No. 13 and No. 14. Especially, the genetic distance between individuals No. 22 and the remnants among individuals in two geographical populations was highest (0.275). This result illustrated that individual No.22 is distinct from other individuals within two shortnecked populations. The different geographical features of two sites may have caused the genetic diversity in two shortnecked clam populations.

Genetic Relationship Analysis of genus Nelumbo Accessions Based on Inter-Simple Sequence Repeats (ISSR) (ISSR 표지에 의한 연속 (Nelumbo)의 유연관계 분석)

  • Ryu, Jai-Hyunk;Choi, Gab-Lim;Lyu, Jae-Il;Lee, Sheong-Chun;Chun, Jong-Un;Shin, Dong-Young;Bae, Chang-Hyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.2
    • /
    • pp.86-92
    • /
    • 2010
  • The polymorphism and the genetic relationships among 32 genetic resources of genus Nelumbo from Korea, Japan, China, USA, India, Thailand and Gabong were thoroughly investigated and extensively examined using ISSR markers. Out of 103 loci detected overall, 94 were identified to be polymorphic with a rate of 91.2%. The genetic similarity matrix revealed a wide range of variability among the 32 accessions, spanning from 0.227 to 0.833. The study findings indicate that the Nelumbo accessions have a high genetic diversity, and accordingly carry a germplasm qualifying as good genetic resources for cross breeding. According to the clustering analysis, different subspecies, N. nucifera and N. lutea, were divided into independent groups and all of the N. nucifera accessions could be classified into five categories. Compared to RAPD analysis, ISSR method showed a clearer picture of polymorphism among the accessions and exhibited a definite distinction even among the subspecies. In this respect, ISSR analysis is considered to be more effective in differentiating the accessions and subspecies of the genus Nelumbo than RAPD test.