• Title/Summary/Keyword: Genetic predisposition

Search Result 79, Processing Time 0.02 seconds

Epidemiology, Major Risk Factors and Genetic Predisposition for Breast Cancer in the Pakistani Population

  • Shaukat, Uzma;Ismail, Muhammad;Mehmood, Nasir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5625-5629
    • /
    • 2013
  • Occurrence of breast cancer is related to genetic as well as cultural, environmental and life-style factors. Variations in diversity of these factors among different ethnic groups and geographical areas emphasize the immense need for studies in all racial-ethnic populations. The incidence of breast cancer in Pakistan is highest in Asians after Jews in Israel and 2.5 times higher than that in neighboring countries like Iran and India, accounting for 34.6% of female cancers. The Pakistani population is deficient in information regarding breast cancer etiology and epidemiology, but efforts done so far had suggested consanguinity as a major risk factor for frequent mutations leading to breast cancer and has also shed light on genetic origins in different ethnic groups within Pakistan. World-wide research efforts on different ethnicities have enhanced our understanding of genetic predisposition to breast cancer but despite these discoveries, 75% of the familial risk of breast cancer remains unexplained, highlighting the fact that the majority of breast cancer susceptibility genes remain unidentified. For this purpose Pakistani population provides a strong genetic pool to elucidate the genetic etiology of breast cancer because of cousin marriages. In this review, we describe the known breast cancer predisposition factors found in the local Pakistani population and the epidemiological research work done to emphasize the importance of exploring factors/variants contributing to breast cance, in order to prevent, cure and decrease its incidence in our country.

Obesity : Genetic vs Environmental Factors (비만 : 유전이냐 환경이냐)

  • Lee, Soyoung Irene;Jung, Han-Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • Debates relevant to the etiology of weight gain or obesity, i.e., the dichotomous understandings about whether obesity arises from the genetic predisposition or from the environmental influences, has long existed. This is an important issue because it is related to the therapists's prejudice when treating patients with obesity. In this review, the authors first discuss the environmental and the genetic factors that cause the obesity, and in the latter part, the interactions between genetic and environmental factors will be discussed. This issue is considered and described especially in a conceptual aspect for the therapists ultimately to understand how the genetic and the environmental factors interact to arise obesity. Conclusively, obesity is best understood as a complex, multifactorial, and chronic disabled state, which cause an individual with genetic predispostion to obesity under the environmental influences. In future, in favor of the accumulated knowledge about the genetic and environmental impacts and their interactions in detail, we will be able to provide a client-specific management or prevention of obesity.

  • PDF

Investigation and Analysis of Allergy-related SNPs for Allergy Affected Students in a high school. (과학영재학교 학생들이 알러지 관련 SNP 탐색고 분석)

  • 김경원;이호경;김현근;김수영;안정훈
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.847-854
    • /
    • 2004
  • Allergy is a multi-factorial disease influenced by genetic and environmental factors. As the number of allergy-affected people is increasing in developed countries, there is an increasing interest in genetic predisposition to the allergy. A number of genes and chromosomal region have been identified to be linked to allergy including rhinitis, asthma and atopy. In order to understand the genetic background for the allergy-affected people, we investigated genetic predisposition among students enrolled in Busan Science Academy. Among 138 students, about 30% students had some allergy-related disorder including rhinitis, asthma and atopy. We analyzed several single nucleotide polymorphisms (SNPs) within two genes, Inter-leukin-4(IL-4) and Interleukin-4 receptor(IL-4R), which are involved in the induction of allergy reaction with the Th2 immunity. For 96 samples obtained from students, we analyzed 9 SNPs including -590 C/T and -34 C/T in IL-4, and I75V, Q576R, E375A, e406R, 5411L, S761P and S727A in IL-4R. From the analysis, these SNPs showed slight differences among normal and allergy-affected students, but these differences was not enough to predict the predisposition to the allergy. In contrast to previous reports, we could not find SNP(s) related with allergy. These results suggest that genetic tests recently performed in Korea widely have to be reassessed for its validity of genetic predisposition. [Supported by grants from MOST]

Pediatric High Grade Gliomas in the Context of Cancer Predisposition Syndromes

  • Michaeli, Orli;Tabori, Uri
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.319-332
    • /
    • 2018
  • Germline mutations in cancer causing genes result in high risk of developing cancer throughout life. These cancer predisposition syndromes (CPS) are especially prevalent in childhood brain tumors and impact both the patient's and other family members' survival. Knowledge of specific CPS may alter the management of the cancer, offer novel targeted therapies which may improve survival for these patients, and enables early detection of other malignancies. This review focuses on the role of CPS in pediatric high grade gliomas (PHGG), the deadliest group of childhood brain tumors. Genetic aspects and clinical features are depicted, allowing clinicians to identify and diagnose these syndromes. Challenges in the management of PHGG in the context of each CPS and the promise of innovative options of treatment and surveillance guidelines are discussed with the hope of improving outcome for individuals with these devastating syndromes.

Global Genetic Analysis

  • Elahi, Elahe;Kumm, Jochen;Ronaghi, Mostafa
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.11-27
    • /
    • 2004
  • The introduction of molecular markers in genetic analysis has revolutionized medicine. These molecular markers are genetic variations associated with a predisposition to common diseases and individual variations in drug responses. Identification and genotyping a vast number of genetic polymorphisms in large populations are increasingly important for disease gene identification, pharmacogenetics and population-based studies. Among variations being analyzed, single nucleotide polymorphisms seem to be most useful in large-scale genetic analysis. This review discusses approaches for genetic analysis, use of different markers, and emerging technologies for large-scale genetic analysis where millions of genotyping need to be performed.

Genetic risk factors associated with respiratory distress syndrome

  • Jo, Heui Seung
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.4
    • /
    • pp.157-163
    • /
    • 2014
  • Respiratory distress syndrome (RDS) among preterm infants is typically due to a quantitative deficiency of pulmonary surfactant. Aside from the degree of prematurity, diverse environmental and genetic factors can affect the development of RDS. The variance of the risk of RDS in various races/ethnicities or monozygotic/dizygotic twins has suggested genetic influences on this disorder. So far, several specific mutations in genes encoding surfactant-associated molecules have confirmed this. Specific genetic variants contributing to the regulation of pulmonary development, its structure and function, or the inflammatory response could be candidate risk factors for the development of RDS. This review summarizes the background that suggests the genetic predisposition of RDS, the identified mutations, and candidate genetic polymorphisms of pulmonary surfactant proteins associated with RDS.

Obesity: Interactions of Genome and Nutrients Intake

  • Doo, Miae;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Obesity has become one of the major public health problems all over the world. Recent novel eras of research are opening for the effective management of obesity though gene and nutrient intake interactions because the causes of obesity are complex and multifactorial. Through GWASs (genome-wide association studies) and genetic variations (SNPs, single nucleotide polymorphisms), as the genetic factors are likely to determine individuals' obesity predisposition. The understanding of genetic approaches in nutritional sciences is referred as "nutrigenomics". Nutrigenomics explores the interaction between genetic factors and dietary nutrient intake on various disease phenotypes such as obesity. Therefore, this novel approach might suggest a solution for the effective prevention and treatment of obesity through individual genetic profiles and help improve health conditions.

Preimplantation Genetic Diagnosis in Inborn Error Metabolic Disorders (유전성 대사질환의 착상전 유전진단)

  • Kang, Inn Soo
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.94-107
    • /
    • 2005
  • Prenatal diagnosis (PND) such as amniocentesis or chorionic villi sampling has been widely used in order to prevent the birth of babies with defects especially in families with single gene disorderor chromosomal abnormalities. Preimplantation genetic diagnosis (PGD) has already become an alternative to traditional PND. Indications for PGD have expanded beyond those practices in PND (chromosomal abnormalities, single gene defects), such as late-onset diseases with genetic predisposition, and HLA typing for stem cell transplantation to affected sibling. After in vitro fertilization, the biopsied blastomere from the embryo is analyzed for single gene defect or chromosomal abnormality. The unaffected embryos are selected for transfer to the uterine cavity. Therefore, PGD has an advantage over PND as it can avoid the risk of pregnancy termination. In this review, PGD will be introduced and application of PGD in inborn error metabolic disorder will be discussed.

  • PDF

Finding Genetic Risk Factors of Gestational Diabetes

  • Kwak, Soo Heon;Jang, Hak C.;Park, Kyong Soo
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.239-243
    • /
    • 2012
  • Gestational diabetes mellitus (GDM) is a complex metabolic disorder of pregnancy that is suspected to have a strong genetic predisposition. It is associated with poor perinatal outcome, and both GDM women and their offspring are at increased risk of future development of type 2 diabetes mellitus (T2DM). During the past several years, there has been progress in finding the genetic risk factors of GDM in relation to T2DM. Some of the genetic variants that were proven to be significantly associated with T2DM are also genetic risk factors of GDM. Recently, a genome-wide association study of GDM was performed and reported that genetic variants in CDKAL1 and MTNR1B were associated with GDM at a genome-wide significance level. Current investigations using next-generation sequencing will improve our insight into the pathophysiology of GDM. It would be important to know whether genetic information revealed from these studies could improve our prediction of GDM and the future development of T2DM. We hope further research on the genetics of GDM would ultimately lead us to personalized genomic medicine and improved patient care.

Type 1 diabetes genetic susceptibility markers and their functional implications

  • Park, Yongsoo
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by selective destruction of pancreatic ${\beta}$-cells resulting in insulin deficiency. The genetic determinants of T1D susceptibility have been linked to several loci, in particular to the human leukocyte antigen (HLA) region, which accounts for 50% of the genetic risk of developing T1D. Multiple genes in the HLA region, which are in strong linkage disequilibrium, are thought to be involved. Another important locus, with a smaller effect on genetic predisposition to T1D, is the insulin gene. The advent of numerous single nucleotide polymorphism markers and genome screening has enabled the identification of dozens of new T1D susceptibility loci. Some of them appear to predispose to T1D independently of the HLA and may be important in families with T1D who lack strong HLA susceptibility. Other loci may interact with each other to cause susceptibility. The autoimmune response against ${\beta}$-cells can also be triggered by environmental factors in the presence of a predisposing genetic background. Deciphering the environmental and genetic factors involved should help to understand the origin of T1D and aid in the design of individualized prevention programs.