• 제목/요약/키워드: Genetic linkage

검색결과 349건 처리시간 0.025초

Construction of Genetic Linkage Map for Korean Soybean Genotypes using Molecular Markers

  • 조예진;박대진;한성진;오주호;황정규;고미숙;정종일
    • 한국작물학회지
    • /
    • 제48권4호
    • /
    • pp.297-302
    • /
    • 2003
  • Genetic linkage maps serve the plant geneticist in a number of ways, from marker assisted selection in plant improvement to map-based cloning in molecular genetic research. Genetic map based upon DNA polymorphism is a powerful tool for the study of qualitative and quantitative traits in crops. The objective of this study was to develop genetic linkage map of soybean using the population derived from the cross of Korean soybean cultivar 'Kwangkyo, and wild accession 'IT182305'. Total 1,000 Operon random primers for RAPD marker, 49 combinations of primer for AFLP marker, and 100 Satt primers for SSR marker were used to screen parental polymorphism. Total 341 markers (242 RAPD, 83 AFLP, and 16 SSR markers) was segregated in 85 $\textrm{F}_2$ population. Forty two markers that shown significantly distorted segregation ratio (1:2:1 for codominant or 3:1 for domimant marker) were not used in mapping procedure. A linkage map was constructed by applying the computer program MAPMAKER/EXP 3.0 to the 299 marker data with LOD 4.0 and maximum distance 50 cM. 176 markers were found to be genetically linked and formed 25 linkage groups. Linkage map spanned 2,292.7 cM across all 25 linkage groups. The average linkage distance between pair of markers among all linkage groups was 13.0 cM. The number of markers per linkage group ranged from 2 to 55. The longest linkage group 3 spanned 967.4 cM with 55 makers. This map requires further saturation with more markers and agronomically important traits will be joined over it.

A Genetic Linkage Map of Soybean with RFLP, RAPD, SSR and Morphological Markers

  • Kim, Hong-Sik;Lee, Suk-Ha;Lee, Yeong-Ho
    • 한국작물학회지
    • /
    • 제45권2호
    • /
    • pp.123-127
    • /
    • 2000
  • The objective of this study was to develop a linkage map of soybean under the genetic background of Korean soybean. A set of 89 F/sub 5/ lines was developed from a cross between 'Pureunkong', which was released for soy-bean sprout, and 'Jinpumkong 2', which had no beany taste in seed due to lack of lipoxygenase 1, 2, and 3. A linkage map was constructed for this population with a set of 113 genetic markers including 7 restriction fragment length polymorphism (RFLP) markers, 79 randomly amplified polymorphic DNA (RAPD) markers, 24 simple sequence repeat(SSR) markers, and 3 morphological markers. The map defined approximately 807.4 cM of the soybean genome comprising 25 linkage groups with 98 polymorphic markers. Fifteen markers remained unlinked. Seventeen linkage groups identified here could be assigned to the respective 13 linkage groups in the USDA soybean genetic map. RFLP and SSR markers segregated at only single genetic loci. Fourteen of the 25 linkage groups contained at least one SSR marker locus. Map positions of most of the SSR loci and their linkages with RFLP markers were consistent with previous reports of the USDA soybean linkage groups. For RAPD, banding patterns of 13 decamer primers showed independent segregations at two or more marker loci for each primer. Only the segregation at op Y07 locus was expressed with codominant manner among all RAPD loci. As the soybean genetic map in our study is more updated, molecular approaches of agronomically important genes would be useful to improve Korean soybean improvement.

  • PDF

Construction of Molecular Genetic Linkage Map Using RAPD Markes in Cowpea

  • Chung, Jong-Il;Shim, Jung-Hyun;Go, Mi-Suk
    • 한국작물학회지
    • /
    • 제46권4호
    • /
    • pp.341-343
    • /
    • 2001
  • Molecular markers have become fundamental tools for crop genome study. The objective of this study was to construct a genetic linkage map for cowpea with PCR-based molecular markers. Five hundred and twenty random RAPD primers were screened for parental polymorphism. Ninety RAPD markers from sixty primers was segregated in 75 F2 mapping population derived from the cross of local cultivars GSC01 and GSC02. 70 RAPD markers were found to be genetically linked and formed 11 linkage groups. Linkage map spanned 474.1 cM across all 11 linkage groups. There are six linkage groups of 40 cM or more, and five smaller linkage groups range from 4.9 to 24.8 cM. The average linkage distance between pairs of markers among all linkage groups was 6.87 cM. The number of markers per linkage group ranged from 2 to 32. The longest group 1 spans 190.6 cM, while the length of shortest group 11 is 4.9 cM. This map is further needed to be saturated with the various markers such as RFLP, AFLP, SSR and more various populations and primers. In addition, morphological markers and biochemical markers should be united to construct a comprehensive linkage map.

  • PDF

Genetic Linkage Plays an Important Role in Maintaining Genetic Variability under Stabilizing Selection in Changing Environment

  • Jeung, Min-Gull;Janes N. Thompson, Jr;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • 제1권4호
    • /
    • pp.619-627
    • /
    • 1997
  • Maintenance of polymorphism in a two-locus system with two alleles under stabilizing selection has been tested by Monte-Carlo simulation. The effect of each allele was additive. Only gene x environment interactions and degree of genetic linkage between loci were considered. There were no other evolutionary forces acting except stabilizing selection. Fixation rates were influenced by the extent of environmental change and the degree of genetic linkage. In most cases, stabilizing selection depleted genetic variability when two loci have a lower degree of linkage (10 cM). When two loci are closely linked (0.1 cM), however, stabilizing selection promoted balanced heterozygotes in changing environments. Thus, environment-dependent selection and recombination rate are important parameters which should be incorporated into mechanisms of maintenance of genetic variability.

  • PDF

Recent Advances in Sheep Genome Mapping

  • Crawford, A.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권7호
    • /
    • pp.1129-1134
    • /
    • 1999
  • The rapid development of the sheep genetic linkage map over the last five years has given us the ability to follow the inheritance of chromosomal regions. Initially this powerful resource was used to find markers linked to monogenic traits but there is now increasing interest in using the genetic linkage map to define the complex of genes that control multigenic production traits. Of particular interest are those production traits that are difficult to measure and select for using classical quantitative genetic approaches. These include resistance to disease where a disease challenge (necessary for selection) poses too much risk to valuable stud animals and meat and carcass qualities which can be measured only after the animal has been slaughtered. The goal for the new millennium will be to fully characterise the genetic basis of multigenic production traits. The genetic linkage map is a vital tool required to achieve this.

Construction of Linkage Map Using RAPD and SSR Markers in Soybean (Glycine max)

  • / J
    • 한국자원식물학회지
    • /
    • 제10권3호
    • /
    • pp.241-246
    • /
    • 1997
  • Linkage maps based on molecular markers are valuable tools in plant breeding and genetic studies. A population of 76 RI lines from the mating of A3733 and PI437.088 was evaluated with Random Amplified Polymorphic DNA(RAPD) and Simple Sequence Repeats (SSR) markers to create soybean molecular linkage map, 302 RAPD and 21 SSR markers were genetically linked and formed forty linkage groups. These linkage groups spanned a genetic distance of 1,775 cM. The average distance between markers was 5.5 cM.

  • PDF

An AFLP-based Linkage Map of Japanese Red Pine (Pinus densiflora) Using Haploid DNA Samples of Megagametophytes from a Single Maternal Tree

  • Kim, Yong-Yul;Choi, Hyung-Soon;Kang, Bum-Yong
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.201-209
    • /
    • 2005
  • We have constructed an AFLP-based linkage map of Japanese red pine (Pinus densiflora Siebold et Zucc.) using haploid DNA samples of 96 megagametophytes from a single maternal tree, selection clone Kyungbuk 4. Twenty-eight primer pairs generated a total of 5,780 AFLP fragments. Five hundreds and thirteen fragments were verified as genetic markers with two alleles by their Mendelian segregation. At the linkage criteria LOD 4.0 and maximum recombination fraction 0.25(${\theta}$), a total of 152 markers constituted 25 framework maps for 19 major linkage groups. The maps spanned a total length of 2,341 cM with an average framework marker spacing of 18.4 cM. The estimated genome size was 2,662 cM. With an assumption of equal marker density, 82.2% of the estimated genome would be within 10 cM of one of the 230 linked markers, and 68.1% would be within 10 cM of one of the 152 framework markers. We evaluated map completeness in terms of LOD value, marker density, genome length, and map coverage. The resulting map will provide crucial information for future genomic studies of the Japanese red pine, in particular for QTL mapping of economically important breeding target traits.

Construction of a Genetic Linkage Map of Shiitake Mushroom Lentinula Edodes Strain L-54

  • Hoi-Shan, Kwan;Hai-Lou, Xu
    • BMB Reports
    • /
    • 제35권5호
    • /
    • pp.465-471
    • /
    • 2002
  • From fruiting bodies of L. edodes strain L-54, single-spore isolates (SSIs) were collected. Two parental types of L-54 were regenerated via monokaryotization. By means of random-amplified polymorphic DNA (RAPD), DNA samples from L-54, its two parental types, and 32 SSIs were amplified with arbitrary primers. Dedikaryotization was demonstrated, and 91 RAPD-based molecular markers were generated. RAPD markers that were segregated at a 1:1 ratio were used to construct a linkage map of L. edodes. This RAPD-linkage map greatly enhanced the mapping of other inheritable and stable markers [such as those that are linked to a phenotype (the mating type), a known gene (priA) and a sequenced DNA fragment (MAT)] with the aid of mating tests, bulked-segregant analysis, and PCR-single-strand conformational polymorphism. These markers comprised a genetic map of L. edodes with 14 linkage groups and a total length of 622.4 cM.

분자생물학의 정신과적 적용 (Molecular Application to Psychiatry)

  • 이민수
    • 생물정신의학
    • /
    • 제1권1호
    • /
    • pp.60-66
    • /
    • 1994
  • Advances in molecular biology have renewed hope for the discovery of disease relevant gene. The basic strategy is gene mapping and likely to have on important role in psychiatric research and practice. Recent linkage studies of chromosomal loci to psychiatric diseases shed light on the potential for new genetics in psychiatric science. This article reviews molecular application to psychiatrymethodological issues in genetic linkage, study of gene expression by analysis of mRNA, and current linkage studies in psychiatric diseases.

  • PDF

유전알고리즘과 겹쳐 그리기 법을 이용한 4절 링크 합성 (Synthesis of 4 bar linkage using genetic algorithm and overlay method)

  • 윤성준;김준환
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.476-478
    • /
    • 2015
  • This paper deals with synthesis of 4 bar linkage by using optimum design. To design 4 bar linkage, overlay method is proposed and for optimization, genetic algorithm is applied with objective function. The accuracy of this method will be determined by errors between real value and test value. We will use Chebychev spacing to get 3 precision positions of input angles. The output angles will be determined by the function that the designer wants input and output relations to be. It will be applied to example to show the accuracy of this method. The advantages of using this method are that it is fast to get optimal solution and it is simple to use.

  • PDF