• Title/Summary/Keyword: Genetic integrity

Search Result 83, Processing Time 0.023 seconds

Nuclease Delivery: Versatile Functions of SLX4/FANCP in Genome Maintenance

  • Kim, Yonghwan
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.569-574
    • /
    • 2014
  • As a scaffold, SLX4/FANCP interacts with multiple proteins involved in genome integrity. Although not having recognizable catalytic domains, SLX4 participates in diverse genome maintenance pathways by delivering nucleases where they are needed, and promoting their cooperative execution to prevent genomic instabilities. Physiological importance of SLX4 is emphasized by the identification of causative mutations of SLX4 genes in patients diagnosed with Fanconi anemia (FA), a rare recessive genetic disorder characterized by genomic instability and predisposition to cancers. Recent progress in understanding functional roles of SLX4 has greatly expanded our knowledge in the repair of DNA interstrand crosslinks (ICLs), Holliday junction (HJ) resolution, telomere homeostasis and regulation of DNA damage response induced by replication stress. Here, these diverse functions of SLX4 are reviewed in detail.

Stabilization of photosynthetic machinery against low-temperature photoinhibition by fatty acid unsaturation of membrane lipids in plants

  • Moon, Byoung-Yong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.68-82
    • /
    • 1999
  • CHilling tolereance of plants are closely correlated with the degree of fatty acid unsaturation of membrane lipids. We studied the effects of low-temperature photoinhibition on the photochemical efficiency of photosystem II in terms of fatty acid unsaturation of thylakoid membranes lipids isolated from chilling -sensitive plants and chilling -resistant ones. To directly test the chilling tolerance of photosynthetic machinery in relation to membrane lipids, we further compared wild type tobacco plants with that of transgenic tobacco plants, in which the sensitivity to chilling had been enhanced by genetic modification of fatty acid unsaturation of chloroplast membrane lipids. The transgenic tobacco plants were found to contain reduced levels of unsaturated membrane fatty acids after being transformed with cDNA for glycerol-3-phophate acyltransferase from squash. The functional integrity of photosystem II during and recovery of photosynthesis from low-temperature photoinhibition will be discussed in connection with the degree of fatty acid unsaturation of chlorophast membranes lipids.

  • PDF

Acid sphingomyelinase-mediated blood-brain barrier disruption in aging

  • Park, Min Hee;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.111-112
    • /
    • 2019
  • Although many studies have reported that the breakdown of the blood-brain barrier (BBB) represents one of the major pathological changes in aging, the mechanism underlying this process remains relatively unexplored. In this study, we described that acid sphingomyelinase (ASM) derived from endothelial cells plays a critical role in BBB disruption in aging. ASM levels were elevated in the brain endothelium and plasma of aged humans and mice, resulting in BBB leakage through an increase in caveolae-mediated transcytosis. Moreover, ASM caused damage to the caveolae-cytoskeleton via protein phosphatase 1-mediated ezrin/radixin/moesin dephosphorylation in primary mouse brain endothelial cells. Mice overexpressing brain endothelial cell-specific ASM exhibited acceleration of BBB impairment and neuronal dysfunction. However, genetic inhibition and endothelial specific knock-down of ASM in mice improved BBB disruption and neurocognitive impairment during aging. Results of this study revealed a novel role of ASM in the regulation of BBB integrity and neuronal function in aging, thus highlighting the potential of ASM as a new therapeutic target for anti-aging.

Host-Microbe Interactions Regulate Intestinal Stem Cells and Tissue Turnover in Drosophila

  • Ji-Hoon Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2024
  • With the activity of intestinal stem cells and continuous turnover, the gut epithelium is one of the most dynamic tissues in animals. Due to its simple yet conserved tissue structure and enteric cell composition as well as advanced genetic and histologic techniques, Drosophila serves as a valuable model system for investigating the regulation of intestinal stem cells. The Drosophila gut epithelium is in constant contact with indigenous microbiota and encounters externally introduced "non-self" substances, including foodborne pathogens. Therefore, in addition to its role in digestion and nutrient absorption, another essential function of the gut epithelium is to control the expansion of microbes while maintaining its structural integrity, necessitating a tissue turnover process involving intestinal stem cell activity. As a result, the microbiome and pathogens serve as important factors in regulating intestinal tissue turnover. In this manuscript, I discuss crucial discoveries revealing the interaction between gut microbes and the host's innate immune system, closely associated with the regulation of intestinal stem cell proliferation and differentiation, ultimately contributing to epithelial homeostasis.

Exploring the Molecular and Developmental Dynamics of Endothelial Cell Differentiation

  • Yu Jung Shin;Jung Hyun Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.15-29
    • /
    • 2024
  • The development and differentiation of endothelial cells (ECs) are fundamental processes with significant implications for both health and disease. ECs, which are found in all organs and blood vessels, play a crucial role in facilitating nutrient and waste exchange and maintaining proper vessel function. Understanding the intricate signaling pathways involved in EC development holds great promise for enhancing vascularization, tissue engineering, and vascular regeneration. Hematopoietic stem cells originating from hemogenic ECs, give rise to diverse immune cell populations, and the interaction between ECs and immune cells is vital for maintaining vascular integrity and regulating immune responses. Dysregulation of vascular development pathways can lead to various diseases, including cancer, where tumor-specific ECs promote tumor growth through angiogenesis. Recent advancements in single-cell genomics and in vivo genetic labeling have shed light on EC development, plasticity, and heterogeneity, uncovering tissue-specific gene expression and crucial signaling pathways. This review explores the potential of ECs in various applications, presenting novel opportunities for advancing vascular medicine and treatment strategies.

Effects of Temperature, Diluents, and Plastic Tubes on the Motility and Acrosome Intactness of Fresh Rooster Semen (닭 신선 정자 운동성과 첨체안정성에 보존 온도, 희석제 및 용기가 미치는 영향)

  • Kim, Sung Woo;Lee, Jae-Yeong;Kim, Chan-Lan;Ko, Yeoung-Gyu;Lee, Sung Soo
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.185-191
    • /
    • 2021
  • Chicken spermatozoa have the ability to survive in low-temperature environments; however, the effects of low temperature on sperm motility and acrosome damage have not been studied in detail. The present study investigated semen longevity following dilution of rooster semen with Beltsville Poultry Semen Extender (BPSE) and Lake extender in preservation vessels (1.5 mL e-tube and 0.5 mL straw). Spermatozoa motility in the closed-type vessel (0.5 mL straw) was higher than that in the 1.5 mL e-tube on day 3 of preservation (68.6±3.1% vs. 22.1±5.7%). The motility of rooster semen diluted with BPSE in 0.5 mL straw was also higher than that of the Lake extender on day 3 of preservation (57.7±5.6% vs. 37.7±5.4%). Furthermore, acrosome intactness was higher in 0.5 mL straw than in the 1.5 mL e-tube, and the rate of acrosome cap damage increased with preservation days. The present study demonstrates that a closed 0.5-mL straw vessel could be used for low-temperature semen preservation, with an increased motility rate and acrosome integrity in fresh rooster semen.

Characterization and functional inferences of a genome-wide DNA methylation profile in the loin (longissimus dorsi) muscle of swine

  • Kim, Woonsu;Park, Hyesun;Seo, Kang-Seok;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.3-12
    • /
    • 2018
  • Objective: DNA methylation plays a major role in regulating the expression of genes related to traits of economic interest (e.g., weight gain) in livestock animals. This study characterized and investigated the functional inferences of genome-wide DNA methylome in the loin (longissimus dorsi) muscle (LDM) of swine. Methods: A total of 8.99 Gb methylated DNA immunoprecipitation sequence data were obtained from LDM samples of eight Duroc pigs (four pairs of littermates). The reference pig genome was annotated with 78.5% of the raw reads. A total of 33,506 putative methylated regions (PMR) were identified from methylated regions that overlapped at least two samples. Results: Of these, only 3.1% were commonly observed in all eight samples. DNA methylation patterns between two littermates were as diverse as between unrelated individuals (p = 0.47), indicating that maternal genetic effects have little influence on the variation in DNA methylation of porcine LDM. The highest density of PMR was observed on chromosome 10. A major proportion (47.7%) of PMR was present in the repeat regions, followed by introns (21.5%). The highest conservation of PMR was found in CpG islands (12.1%). These results show an important role for DNA methylation in species- and tissue-specific regulation of gene expression. PMR were also significantly related to muscular cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism. Conclusion: This study indicated the biased distribution and functional role of DNA methylation in gene expression of porcine LDM. DNA methylation was related to cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism (e.g., insulin signaling pathways). Nutritional and environmental management may have a significant impact on the variation in DNA methylation of porcine LDM.

Cryopreservation of Siberian tiger (Panthera tigris altaica) epididymal spermatozoa: pilot study of post-thaw sperm characteristics

  • Ibrahim, Saddah;Talha, Nabeel Abdelbagi Hamad;Kim, Jeongho;Jeon, Yubeol;Yu, Iljeoung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.130-135
    • /
    • 2022
  • Epididymal sperm cryopreservation provides a potential method for preserving genetic material from males of endangered species. This pilot study was conducted to develop a freezing method for tiger epididymal sperm. We evaluated post-thaw sperm condition using testes with intact epididymides obtained from a Siberian tiger (Panthera tigris altaica) after castration. The epididymis was chopped in Tyrode's albumin-lactate-pyruvate 1x and incubated at 5% CO2, 95% air for 10 min. The Percoll separation density gradient method was used for selective recovery of motile spermatozoa after sperm collection using a cell strainer. The spermatozoa were diluted with modified Norwegian extender supplemented with 20 mM trehalose (extender 1) and subsequent extender 2 (extender 1 with 10% glycerol) and frozen using LN2 vapor. After thawing at 37℃ for 25 s, Isolate® solution was used for more effective recovery of live sperm. Sperm motility (computerized assisted sperm analysis, CASA), viability (SYBR-14 and Propidium Iodide) and acrosome integrity (Pisum sativum agglutinin with FITC) were evaluated. The motility of tiger epididymal spermatozoa was 40.1 ± 2.0%, and progressively motile sperm comprised 32.7 ± 2.3%. Viability was 56.3 ± 1.6% and acrosome integrity was 62.3 ± 4.4%. Cryopreservation of tiger epididymal sperm using a modified Norwegian extender and density gradient method could be effective to obtain functional spermatozoa for future assisted reproductive practices in endangered species.

Effect of lactoferrin on ram sperm motility after cryopreservation

  • Su, Jie;Wang, Caiyun;Song, Yongli;Yang, Yanyan;Cao, Guifang
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1351-1359
    • /
    • 2022
  • Objective: The objective of this study was to analyse the differentially abundant proteins caused by freeze-thawing of ram sperm and explore candidate proteins of interest for their ability to improve ram sperm cryopreservation outcomes in vitro. Methods: Sperm were from three mature Dorper. Fresh and frozen sperm proteins were extracted, and the differentially abundant proteins were analysed by mass spectrometry. Among these proteins, lactoferrin (LTF) was selected to be added before cryopreservation. Next, sperm samples were diluted in Tris extender, with the addition of 0, 10, 100, 500, and 1,000 ㎍/mL of LTF. After thawing, sperm quality was evaluated by motility, plasma membrane integrity, mitochondrial activity and reactive oxygen species (ROS). Results: Cryopreservation significantly altered the abundance of 40 proteins; the abundance of 16 proteins was increased, while that of 24 proteins was decreased. Next, LTF was added to Tris extender applied to ram sperm. The results showed that sperm motility and plasma membrane integrity were significantly improved (p<0.05) by supplementation with 10 ㎍/mL LTF compared to those in the control group. There was no significant difference in mitochondrial activity between the 0 ㎍/mL group and other groups (p>0.05). Supplementation of the cryoprotective extender with 10 ㎍/mL LTF led to decreased ROS levels compared with those in the control and other groups (p<0.05). Conclusion: The LTF is an important protein during cryopreservation, and the addition of 10 ㎍/mL LTF to a cryoprotective extender can significantly improve the function of frozen ram sperm.

Correlation between chromosome abnormalities and genomic imprinting in developing human - 1) Frequent biallelic expression of insulin-like growth factor II (IGF2) in gynogenetic Ovarian Teratomas: Uncoupling of H19 and IGF2 imprinting

  • Choi, Bo-Hwa;Lee, In-Hwan;Chun, Hyo-Jin;Kang, Shin-Sung;Chang, Sung-Ik
    • Journal of Genetic Medicine
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 1998
  • Human uniparental gestations such as gynogenetic ovarian teratomas provide a model to evaluate the integrity of parent-specific gene expression - i.e. imprinting - in the absence of a complementary parental genetic contribution. The few imprinted genes characterized so far include the insulin-like growth factor-2 gene (IGF2) coding for a fetal growth factor and H19 gene whose normal function is unknown but it is likely to act as an mRNA. IGF2 is expressed by the paternal allele and H19 by the maternal allele. This reciprocal expression is quite interesting because both H19 and IGF2 genes are located close to each other on chromosome 11p15.5. In situ RNA hybridization analysis has shown variable expression of the H19 and IGF2 alleles according to the tissue origin in 11 teratomas. Especially, Skin, derivative of ectoderm, is expressed conspicuously. We examined imprinting of H19 and IGF2 in teratomas using PCR and RT-PCR of exonic polymorphism. H19 and IGF2 transcript could be expressed either biallelically or monoallelically in the teratomas. Biallelic expression (i.e., loss of imprinting) of IGF2 occurred in 5 out of 6 mature teratomas and 1 out of 1 immature teratoma. Biallelic expression of H19 occurred in 4 out of 10 mature teratomas and 1 out of 1 immature teratoma. Expression levels of H19 and IGF2 transcript using the semi-quantitative RT-PCR had no relation between monoallelic and biallelic expression. Moreover, IGF2 biallelic expression did not affect allele-specificity or levels of H19 expression. These results demonstrate that both genes, H19 and IGF2, can be imprinted, expressed and regulated independently and individually of each other in ovarian teratoma.

  • PDF