• Title/Summary/Keyword: Genetic diversity ITS

Search Result 325, Processing Time 0.031 seconds

Genetic Diversity and Morphological Variations of Goosegrass [Eleusine indica (L.) Gaertn] Ecotypes in Malaysia

  • Saidi, Nazreen;Kadir, Jugah;Hong, Lau Wei
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.144-154
    • /
    • 2016
  • Goosegrass [Eleusine indica (L.) Gaertn] has been a nuisance to growers in Malaysia due to its increased resistance to commercial herbicides, rapid growth and dissemination, and interference with agricultural practices. In the course of developing an apt integrated management to control goosegrass, more information of this weed is needed. The aim of this study was to look into variations among the goosegrass ecotypes sampled throughout Malaysia from the aspects of genotype and phenotype. Sequence-related amplified polymorphism (SRAP) markers were employed in investigating the genetic diversity and relationships among the 18 goosegrass ecotypes. Consequently, 5 primer combinations amplified 13 fragments with the polymorphism rate of 69.23%. At 74% similarity, the ecotypes were clustered into 6 groups. Phenotypic variability of the goosegrass ecotypes was assessed by observing their morphology, growth and seed traits. Goosegrass ecotypes were sorted into 3 major groups at the genetic distance (DIST) of 0.37. Concurrences of the evaluated genetic distance, ecotypes with the closest and most distant relationships were assembled together in Group I which showed high variation even among ecotypes in the same group. Results obtained thus implied high molecular and morphological variations of the goosegrass ecotypes in Malaysia.

Genetic variation of the endangered species Halenia coreana (Gentianaceae)

  • YUN, Narae;OH, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.1
    • /
    • pp.45-53
    • /
    • 2022
  • Halenia coreana is an endangered, endemic species that is distributed in only a few locations in Korea, such as Mts. Hwaaksan and Daeamsan. It has been recently segregated from H. corniculata, broadly distributed in cold temperate regions that include northern Japan, the Russian Far East, northeastern China, Mongolia, and eastern Europe, where population sizes are usually large. To examine the genetic diversity of H. coreana and evaluate the level of genetic differentiation of the species compared with that of H. corniculata, we surveyed 183 candidate simple sequence repeats (SSR) motif markers for H. coreana and H. corniculata from sequence data of amplified fragments of a specific length in the genome. A total of 17 genomic-SSR markers were selected to examine the levels of genetic diversity and differentiation using 17 samples of H. coreana and 60 samples of three populations of H. corniculata. The results here suggest that the genetic diversity of H. coreana is very low with a high frequency of inbreeding within its population. We found that H. coreana is genetically differentiated from H. corniculata, supporting the recognition of the geographically isolated H. coreana as a distinct species.

Genetic Diversity of Plasmodium vivax Causing Epidemic Malaria in the Republic of Korea

  • Bahk, Young Yil;Kim, Jeonga;Ahn, Seong Kyu;Na, Byoung-Kuk;Chai, Jong-Yil;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.6
    • /
    • pp.545-552
    • /
    • 2018
  • Plasmodium vivax is more challenging to control and eliminate than P. falciparum due to its more asymptomatic infections with low parasite densities making diagnosis more difficult, in addition to its unique biological characteristics. The potential re-introduction of incidence cases, either through borders or via human migrations, is another major hurdle to sustained control and elimination. The Republic of Korea has experienced re-emergence of vivax malaria in 1993 but is one of the 32 malaria-eliminating countries to-date. Despite achieving successful nationwide control and elimination of vivax malaria, the evolutionary characteristics of vivax malaria isolates in the Republic of Korea have not been fully understood. In this review, we present an overview of the genetic variability of such isolates to increase understanding of the epidemiology, diversity, and dynamics of vivax populations in the Republic of Korea.

Morphometric variation, genetic diversity and allelic polymorphism of an underutilised species Thaumatococcus daniellii population in Southwestern Nigeria

  • Animasaun, David Adedayo;Afeez, Azeez;Adedibu, Peter Adeolu;Akande, Feyisayo Priscilla;Oyedeji, Stephen;Olorunmaiye, Kehinde Stephen
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.298-308
    • /
    • 2020
  • Genetic diversity among Thaumatococcus daniellii populations in the southwestern region of Nigeria were assessed using morphometric and molecular markers to determine the population structure and existing genetic relationship for its improvement, conservation and sustainable utilisation. Populations from five locations in each of the six states were used for the study. Morphometric data were collected on folia characters and analysed for variability. Genome DNA was isolated from the plant leaf and amplified by polymerase chain reaction with inter-simple sequence repeat markers (ISSR) to determine the allelic polymorphism, marker effectiveness and genetic relationship of the population. The results showed significant variations in petiole length and leaf dimensions of the populations within and across the states. These morphometric traits are the major parameters that delimit the populations and they correlated significantly at P≤0.05. Analysis of the electrophoregram showed that the ISSR markers are effective for the diversity study. A total of 136 loci were amplified with an average of 7.16 loci per marker, 63.2% of the loci were polymorphic. The Principal Coordinate Analysis revealed that seven factors accounted for 81.6% of the variation and the dendrogram separated the populations into two major groups at a genetic distance of 10 (about 90% similarity) with sub-groups and clusters. Most populations within the state had a high degree of similarity, nonetheless, strong genetic relationship exists among populations from different states. The close relationship between populations across the states suggests a common progenitor, which are likely separated by ecological or geographical isolation mechanisms.

Genetic diversity, structure analysis and relationship in soybean mutants as revealed by TRAP marker

  • Kim, Dong-Gun;Lyu, Jae-Il;Lee, Min-Kyu;Kim, Jung Min;Hong, Min Jeong;Kim, Jin-Baek;Bae, Chang-Hyu;Kwon, Soon-Jae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.43-43
    • /
    • 2018
  • Mutation breeding by radiation is useful for improving various crop species. Up to now, a total of 170 soybean mutant varieties have been released in the world, which is the second most registered varieties after rice. Despite the economic importance of soybean, there have been no TRAP marker system studies on genetic relationships between/among mutant lines. To develop a strategy of Mutant Diversity Pool (MDP) conservation, a study on the genetic diversity of 210 soybean mutant lines (8 cultivars and 202 mutants) was performed through a TRAP analysis. Sixteen primer combinations amplified a total of 551 fragments. The highest (84.00%) and lowest (32.35%) polymorphism levels were obtained with primers MIR157B + Ga5 and B14G14B + Ga3, respectively. The mean PIC values 0.15 varied among the primer combination ranging from 0.07 in B14G14B + Sal2 to 0.23 in MIR157B + Sa4. Phylogenetic, principal component analysis (PCA) and structure analysis indicated that the 210 lines belong to four groups based on the 16 combination TRAP markers. AMOVA showed 21.0% and 79.0% variations among and within the population, respectively. Overall, the genetic similarity of each cultivar and its mutants were higher than within other mutant populations. Our results suggest that the TRAP marker system may be useful for assessing the genetic diversity among soybean mutants and help to improve our knowledge of soybean mutation breeding.

  • PDF

Cloning and Characterization of a PI-like MADS-Box Gene in Phalaenopsis Orchid

  • Guo, Bin;Hexige, Saiyin;Zhang, Tian;Pittman, Jon K.;Chen, Donghong;Ming, Feng
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.845-852
    • /
    • 2007
  • The highly evolved flowers of orchids have colorful sepals and fused columns that offer an opportunity to discover new genes involved in floral development in monocotyledon species. In this investigation, we cloned and characterized the homologous PISTALLATA-like (PI-like) gene PhPI15 ($\underline{Ph}alaenopsis$ $\underline{PI}$ STILLATA # $\underline{15}$), from the Phalaenopsis hybrid cultivar. The protein sequence encoded by PhPI15 contains a typical PI-motif. Its sequence also formed a subclade with other monocot PI-type genes in phylogenetic analysis. Southern analysis showed that PhPI15 was present in the Phalaenopsis orchid genome as a single copy. Furthermore, it was expressed in all the whorls of the Phalaenopsis flower, while no expression was detected in vegetative organs. The flowers of transgenic tobacco plants ectopically expressing PhPI15 showed male-sterile phenotypes. Thus, as a Class-B MADS-box gene, PhPI15 specifies floral organ identity in orchids.

Studies on Genetic Variation of Different Chinese Duck Populations with Random Amplified Polymorphic DNA Analysis

  • Su, Y.;Liu, C.W.;Liu, L.;Ye, C.H.;Cao, W.Q.;Huang, Y.Q.;Zheng, J.;Cai, D.Y.;Olowofeso, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.475-481
    • /
    • 2006
  • The genetic polymorphism and relationships of Muscovy, Cherry Valley Meat ducks, Partridge ducks and their crossbreds $F_1$ and $F_2$, respectively, were studied using a random amplified polymorphic DNA (RAPD) technique. The results showed that RAPD markers were effective for the analysis of genetic relationships among ducks. Amplification with 20-primers gave 760 reproducible amplified fragments. The percentage of polymorphic marker band was 74.70%, which indicates that the RAPD technique had higher efficiency of polymorphism detection and sensitivity in studying the genetic variations among ducks and showed that the genetic polymorphism was abundant between two species of duck populations. The average index of genetic distance in hybrid $F_2$ was 0.2341 and higher than that of its parents, which indicates that the genetic diversity was improved by crossbreeding with Muscovy.

Genetic Diversity of Schistosoma haematobium Eggs Isolated from Human Urine in Sudan

  • Quan, Juan-Hua;Choi, In-Wook;Ismail, Hassan Ahmed Hassan Ahmed;Mohamed, Abdoelohab Saed;Jeong, Hoo-Gn;Lee, Jin-Su;Hong, Sung-Tae;Yong, Tai-Soon;Cha, Guang-Ho;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.3
    • /
    • pp.271-277
    • /
    • 2015
  • The genetic diversity of Schistosoma haematobium remains largely unstudied in comparison to that of Schistosoma mansoni. To characterize the extent of genetic diversity in S. haematobium among its definitive host (humans), we collected S. haematobium eggs from the urine of 73 infected schoolchildren at 5 primary schools in White Nile State, Sudan, and then performed a randomly amplified polymorphic DNA marker ITS2 by PCR-RFLP analysis. Among 73 S. haematobium egg-positive cases, 13 were selected based on the presence of the S. haematobium satellite markers A4 and B2 in their genomic DNA, and used for RFLP analysis. The 13 samples were subjected to an RFLP analysis of the S. haematobium ITS2 region; however, there was no variation in size among the fragments. Compared to the ITS2 sequences obtained for S. haematobium from Kenya, the nucleotide sequences of the ITS2 regions of S. haematobium from 4 areas in Sudan were consistent with those from Kenya (> 99%). In this study, we demonstrate for the first time that most of the S. haematobium population in Sudan consists of a pan-African S. haematobium genotype; however, we also report the discovery of Kenyan strain inflow into White Nile, Sudan.

Genetic polymorphism of merozoite surface protein 1 and antifolate-resistant genes in Plasmodium falciparum from Mali and Niger

  • Mahaman Moustapha Lamine;Rabia Maman;Abdoul Aziz Maiga;Ibrahim Maman Laminou
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.455-462
    • /
    • 2023
  • Since 2015, countries in the Sahel region have implemented large-scale seasonal malaria chemoprevention (SMC). However, the mass use of sulfadoxine-pyrimethamine (SP) plus amodiaquine impacts the genetic diversity of malaria parasites and their sensitivity to antimalarials. This study aimed to describe and compare the genetic diversity and SP resistance of Plasmodium falciparum strains in Mali and Niger. We collected 400 blood samples in Mali and Niger from children aged 3-59 months suspected of malaria. Of them, 201 tested positive (Niger, 111, 55.2%; Mali, 90, 44.8%). Polymorphism of merozoite surface protein 1 (msp1) genetic marker showed 201 allotypes. The frequency of the RO33 allotype was significantly higher in Niger (63.6%) than in Mali (39.3%). There was no significant difference in the frequency of the K1 and MAD20 allotypes between the 2 countries. The multiplicity of infection was 2 allotypes per patient in Mali and one allotype per patient in Niger. The prevalence of strains with the triple mutants Pfdhfr51I/Pfdhfr59R/Pfdhps436A/F/H and Pfdhfr51I/Pfdhfr59R/Pfdhps437G was 18.1% and 30.2%, respectively, and 7.7% carried the quadruple mutant Pfdhfr51I/Pfdhfr59R/Pfdhps436A/F/H/Pfdhps437G. Despite the significant genetic diversity of parasite populations, the level of SP resistance was comparable between Mali and Niger. The frequency of mutations conferring resistance to SP still allows its effective use in intermittent preventive treatment in pregnant women and in SMC.

Genetic Analysis of Wheat for Plant Height by RNA-seq Analysis of Wheat Cultivars 'Keumkang' and 'Komac 5'

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.275-275
    • /
    • 2022
  • One of the most widely grown food crops in the world, wheat, is increasing more lodged since for increased rains and winds caused by abnormal climate. During the Green Revolution, shorter wheat cultivars were bred using many Rht genes to increase lodging resistance. However, since only some Rht genes were used for breeding shorter wheat, it may have had a limited impact on wheat breeding and reduced genetic diversity. Therefore, it is essential to search for genes that have breeding potential and affect dwarfism in order to increase the genetic diversity of dwarf characteristics in wheat. In this study, we performed the RNA-seq between 'Keumkang' and 'Komac 5' ('Keumkang' mutant) to analyze the difference in plant height. Differentially expressed genes (DEGs) analysis and Gene function annotation were performed using 265,365,558 mapped reads. Cluster set analysis was performed to compress and select candidate gene DEGs affecting plant height, stem and internode. Gene expression analysis was performed in order to identify the functions of the selected genes by condensing the results of the DEG analysis into a cluster set analysis. This analysis of these plant height-related genes could help reduce plant height, improve lodging resistance, and increase wheat yield. Its application to wheat breeding will also affect the increased genetic diversity of wheat dwarfism.

  • PDF