• Title/Summary/Keyword: Genetic diseases

Search Result 1,045, Processing Time 0.028 seconds

Generation of mmp15b Zebrafish Mutant to Investigate Liver Diseases

  • Kim, Oc-Hee;An, Hye Suck;Choi, Tae-Young
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.385-390
    • /
    • 2019
  • Upon gene inactivation in animal models, the zebrafish (Danio rerio) has become a useful model organism for many reasons, including the fact that it is amenable to various forms of genetic manipulation. Genome editing is a type of genetic engineering in which DNA is inserted, deleted, modified, or replaced in the genome of a living organism. Mainly, CRISPR (clustered regularly interspaced short palindromic repeats) Cas9 (CRISPR-associated protein 9) is a technology that enables geneticists to edit parts of the genome. In this study, we utilized this technology to generate an mmp15b mutant by using zebrafish as an animal model. MMP15 is the membrane-type MMP (MT-MMP) which is a recently identified matrix metalloproteinase (MMP) capable of degrading all kinds of extracellular matrix proteins as well as numerous bioactive molecules. Although the newly-established mmp15b zebrafish mutant didn't exhibit morphological phenotypes in the developing embryos, it might be further utilized to understand the role of MMP15 in liver-related diseases, such as liver fibrosis, and associated pathogeneses in humans.

Tubulopathy: the clinical and genetic approach in diagnosis

  • Jinwoon Joung;Heeyeon Cho
    • Childhood Kidney Diseases
    • /
    • v.27 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • Remarkable advances in genetic diagnosis expanded our knowledge about inherited tubulopathies and other genetic kidney diseases. This review suggests a simple categorization of inherited tubular disease, clarifies the concept of autosomal dominant tubulointerstitial kidney disease (ADTKD), and introduces novel therapies developed for tubulopathies. Facing patients with suspicious tubular disorders, clinicians should first evaluate the status of volume and acid-base. This step helps the clinicians to localize the affected segment and to confirm genetic diagnosis. ADTKD is a recently characterized disease entity involving tubules. The known causative genes are UMOD, MUC1, REN, and HNF1β. Still, only half of ADTKD patients show mutations for these four identified genes. Whole exome sequencing is a suitable diagnostic tool for tubulopathies, especially for ADTKD. Genetic approaches to treat tubulopathies have progressed recently. Despite the practical obstacles, novel therapies targeting inherited tubulopathies are currently in development.

The role of de novo variants in complex and rare diseases pathogenesis

  • Rahman, Mahir;Lee, Woohyung;Choi, Murim
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • De novo variants (DNVs) can arise during parental germ cell formation, fertilization, and the processes of embryogenesis. It is estimated that each individual carries 60-100 such spontaneous variants in the genome, most of them benign. However, a number of recent studies suggested that DNVs contribute to the pathogenesis of a variety of human diseases. Applications of DNVs include aiding in clinical diagnosis and identifying disease-causing genetic factors in patients with atypical symptoms. Therefore, understanding the roles of DNVs in a trio, with healthy parents and an affected offspring, would be crucial in elucidating the genetic mechanism of disease pathogenesis in a personalized manner.

Statistical models and computational tools for predicting complex traits and diseases

  • Chung, Wonil
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.36.1-36.11
    • /
    • 2021
  • Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions across a wide range of complex traits and diseases. The recent arrival of large-sample public biobanks enables highly accurate polygenic predictions based on genetic variants across the whole genome. Various statistical methodologies and diverse computational tools have been introduced and developed to computed the polygenic risk score (PRS) more accurately. However, many researchers utilize PRS tools without a thorough understanding of the underlying model and how to specify the parameters for the best performance. It is advantageous to study the statistical models implemented in computational tools for PRS estimation and the formulas of parameters to be specified. Here, we review a variety of recent statistical methodologies and computational tools for PRS computation.

An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening

  • Chang, Li-Jung;Chen, Shee-Uan;Tsai, Yi-Yi;Hung, Chia-Cheng;Fang, Mei-Ya;Su, Yi-Ning;Yang, Yu-Shih
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.3
    • /
    • pp.126-134
    • /
    • 2011
  • Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence $in-situ$ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium.

Disease Prediction Index of Customized Nutrition And Exercise Management Services Based On Personal Genetic Information (개인유전자정보에 따른 맞춤형 영양 및 운동관리시스템의 질병 예측 인덱스)

  • Seo, Young-woo;Joo, Moon-il;Huh, Gyung Hye;Kim, Hee-cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.602-604
    • /
    • 2017
  • As human life span has increased, people have wanted to live healthier desires. Especially Korea has rapidly entered an aging society, leading to the burden of medical expenses to the increase of disease accompanying aging. To alleviate the burden of medical expenses, prediction and prevention are important rather than treatment of diseases. It is possible to predict and prevent diseases by measuring individual genetic information. In order to utilize individual's genetic information Korea's genetic information is grasped through SNP (800 thousand) and GWAS optimized for the discovery of genetic factors of phenotype and disease of Koreans, The genetic information of each individual is analyzed in the genetic (constitutional) characteristics of the individual. In this thesis we develop a classification index so that we can classify populations of specific chronic diseases (obesity, diabetes or cardiovascular system). Try to develop health care services to manage custom diet and exercise associated with chronic illness.

  • PDF

Oral Bacterial Genetic Testing using Big Data

  • Hee-Sun, Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.111-117
    • /
    • 2023
  • The oral cavity is a window into the health of the whole body and a gateway for many harmful bacteria. It is a very important part of our body. The biggest advantage of genetic testing is that it can systematically prevent and manage diseases by examining bacteria in the oral cavity and predicting systemic diseases that may occur in our body through big data AI algorithm analysis. Therefore, in this paper, the researcher's family conducts genetic testing directly to derive the results. In this study, in November 2022, 4 family members of the researcher listened to a prior explanation from 1 dentist and 1 dental hygienist at J Dental Clinic, a preventive dental clinic located in Seoul, and after filling out the consent form, oral examination and genetic testing were performed. Genetic testing was performed with Dr.*** for adults and He***** products for middle and elementary school students. Genetic testing, which is currently being conducted in Korea, has the advantage that subjects can access it relatively easily without drawing blood, but it also has limitations such as time and cost. Nevertheless, I think it is a part to be highly evaluated in that systemic diseases can be predicted through oral microorganisms.

Integrated diagnostic approach of pediatric neuromuscular disorders

  • Lee, Ha Neul;Lee, Young-Mock
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • Clinical and genetic heterogeneity in association with overlapping spectrum is characteristic in pediatric neuromuscular disorders, which makes confirmative diagnosis difficult and time consuming. Considering evolution of molecular genetic diagnosis and resultant upcoming genetically modifiable therapeutic options, rapid and cost-effective genetic testing should be applied in conjunction with existing diagnostic methods of clinical examinations, laboratory tests, electrophysiologic studies and pathologic studies. Earlier correct diagnosis would enable better clinical management for these patients in addition to new genetic drug options and genetic counseling.

Challenge of Personalized Medicine in the Genomic Era (유전의료시대의 "맞춤의학")

  • Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.5 no.2
    • /
    • pp.89-93
    • /
    • 2008
  • "Personalized medicine," the goal of which is to provide better clinical care by applying patient's own genomic information to their health care is a global challenge for the $21^{st}$ century "genomic era." This is especially true in Korea, where provisions for clinical genetic services are inadequate for the existing demand, let alone future demands. Genomics-based knowledge and tools make it possible to approach each patient as a unique biological individual, which has led to a paradigm-shift in medical practice, giving it more of a predictive focus as compared with current treatment oriented approach. With recent advancements in genomics, many genetic tests, such as susceptibility genetic tests, have been developed for both rare single gene diseases and more common multifactorial diseases. Indeed, genetic tests for presymtomatic individuals and genetic tests for drug response have become widely available, and personalized medicine will face the challenge of assisting patients who use such tests to make appropriate and wise use of genetic risk assessment. A major challenge of genomic medicine lies in understanding and communicating disease risk in order to facilitate and support patients and their families in making informed decisions. Establishment of a health care system with provisions for genetic counseling as an integral part of health care service, in addition to genomic literacy of health care providers, is vital to meet this growing challenge. Realization of the promise of personalized medicine in the era of genomics for improvement of health care is dependent on further development of next generation sequencing technology and affordable sequencing test costs. Also necessary will be policy development concerning the ethical, legal and social issues of genomic medicine and an educated and ready medical community with clinical practice guidelines for genetic counseling and genetic testing.

  • PDF