• Title/Summary/Keyword: Genetic clusters

Search Result 284, Processing Time 0.03 seconds

Analysis of the Genetic Diversity and Population Structure of Amaranth Accessions from South America Using 14 SSR Markers

  • Oo, Win Htet;Park, Yong-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.336-346
    • /
    • 2013
  • Amaranth (Amaranthus sp. L.) is an important group of plants that includes grain, vegetable, and ornamental types. Centers of diversity for Amaranths are Central and South America, India, and South East Asia, with secondary centers of diversity in West and East Africa. The present study was performed to determine the genetic diversity and population structure of 75 amaranth accessions: 65 from South America and 10 from South Asia as controls using 14 SSR markers. Ninety-nine alleles were detected at an average of seven alleles per SSR locus. Model-based structure analysis revealed the presence of two subpopulations and 3 admixtures, which was consistent with clustering based on the genetic distance. The average major allele frequency and polymorphic information content (PIC) were 0.42 and 0.39, respectively. According to the model-based structure analysis based on genetic distance, 75 accessions (96%) were classified into two clusters, and only three accessions (4%) were admixtures. Cluster 1 had a higher allele number and PIC values than Cluster 2. Model-based structure analysis revealed the presence of two subpopulations and three admixtures in the 75 accessions. The results of this study provide effective information for future germplasm conservation and improvement programs in Amaranthus.

Application of RAPD markers for characterization of ${\gamma}$-ray-induced rose mutants and assessment of genetic diversity

  • Chakrabarty, D.;Datta, S.K.
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.237-242
    • /
    • 2010
  • Six parent and their 12 gamma ray-induced somatic flower colour mutants of garden rose were characterized to discriminate the mutants from their respective parents and understanding the genetic diversity using Random amplification of polymorphic DNA (RAPD) markers. Out of 20 primers screened, 14 primers yielded completely identical fragments patterns. The other 7 primers gave highly polymorphic banding patterns among the radiomutants. All the cultivars were identified by using only 7 primers. Moreover, individual mutants were also distinguished by unique RAPD marker bands. Based on the presence or absence of the 48 polymorphic bands, the genetic variations within and among the 18 cultivars were measured. Genetic distance between all 18 cultivars varied from 0.40 to 0.91, as revealed by Jaccard's coefficient matrix. A dendrogram was constructed based on the similarity matrix using the Neighbor Joining Tree method showed three main clusters. The present RAPD analysis can be used not only for estimating genetic diversity present in gamma ray-induced mutants but also for correct identification of mutant/new varieties for their legal protection under plant variety rights.

Genetic Diversity and Relationship Analysis of Genus Taraxacum Accessions Collected in Korea

  • Ryu, Jai-Hyunk;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.25 no.3
    • /
    • pp.329-338
    • /
    • 2012
  • Genus Taraxacum has been widely used as a folkloric medicine for treatment of diverse diseases. The genetic diversity and relationship among 32 accessions belonging to five Taraxacum species (T. mongolicum T. coreanum, T. coreanum var. flavescens, T. officinale and T. laevigatum) which collected from field, mountain, island and seaside of Korea were evaluated using ISSR markers. A total of 142 ISSR loci detected in the overall species were all polymorphic loci (100%) and interspecies polymorphisms obtained from Korean native and naturalized species were 98.2% and 94.5%, respectively. The genetic similarity matrix (GSM) among 32 accessions ranged from 0.025 to 0.860 with an average of 0.303. According to the clustering analysis, the Korean native species and naturalized species were divided two major clusters. In addition, the different species were divided into independent groups except for the T. coreanum and T. coreanum var. flavescens, and all the 32 accessions could be classified into 7 categories. The study findings indicate that Taraxacum accessions have a high genetic diversity and the dandelion accessions as breeding materials can be effectively utilized for the improvement of Taraxacum breeding.

Geographic Variations of Three Fulvia mutica Populations

  • Kang, Seo-Kyeong;Yoon, Jong-Man
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.163-169
    • /
    • 2013
  • In the present study, the seven primers BION-33, BION-34, BION-37, BION-41, BION-44, BION-45 and BION-42 generated the total number of loci, average number of loci per lane and specific loci in Hongseong, Yeosu and Goheung population of F. mutica, respectively. 7 primers generated 19 specific loci in the Hongseong population, 29.3 in the Yeosu population and 23.1 in the Goheung population, respectively. Especially, the decamer primer BION-37 generated 7 unique loci to each population, which were identifying each population, approximately 700 bp in Hongseong population. In this study, the dendrogram obtained by the seven primers indicates three genetic clusters: cluster 1 (HONGSEONG 01-HONGSEONG 07), cluster 2 (YEOSU 08-YEOSU 14) and cluster 3 (GOHEUNG 15-GOHEUNG 21). Among the twenty one cockles, the shortest genetic distance that displayed significant molecular differences was between individuals 17 and 19 from the Goheung population (genetic distance = 0.051), while the longest genetic distance among the twenty-one cockle individuals that displayed significant molecular differences was between individuals HONGSEONG no. 03 and YEOSU no. 12 (genetic distance = 0.616). Relatively, individuals of YEOSU population were fairly closely related to that of GOHEUNG population. Ultimately, PCR fragments revealed of in this study may be useful as a DNA marker the three geographic populations to distinguish.

Genetic Diversity Analysis of Maintaining Lines for Kenyan Sunflower (Helianthus annus L.) Using Allele Specific SSR Markers

  • Mwangi, Esther W.;Lee, Myung-Chul;Sung, Jung Suk;Marzougui, Salem;Bwalya, Ernest C.
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.61-61
    • /
    • 2019
  • In any crop breeding program Selection and use of genetically diverse genotypes to develop cultivars with a broad genetic base is important. Molecular markers play a major role in selecting diverse genotypes. Molecular breeding programs of the crop can be made more efficient by use of molecular markers. The present study was done with an aim of analyzing genetic diversity and the population structure in 24 accessions of sunflower (Helianthus annus L.) from Kenya genetic diversity using 35 EST-SSR and gSSR primers.Out of the 35 markers 3 were not polymorphic as they indicated Polymorphic Information content( PIC) of value 0.00 and so the data analysis was done using 32 markers . The 32 set of markers used produced 29 alleles ranging from 2 to 7with a mean of 3.0 alleles per locus.The average value of polymorphic information contents(PIC) were 0.3 .Genetic diversity analysis using these markers revealed 3 major clusters. This result could be useful for designing strategies to make elite hybrid and inbreeding of crossing block for breeding and future molecular breeding programs to make elite variety.

  • PDF

A Statistical Analysis of Phenotypic Diversity Based on Genetic Traits in Barley Germplasms (특성평가 정보를 활용한 보리 유전자원 형태적 형질 다양성의 통계적 분석)

  • Yu, Dong Su;Shin, Myoung-Jae;Park, Jin-Cheon;Kang, Manjung
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.641-651
    • /
    • 2022
  • The biodiversity research of barley, a functional food, is proceeding to conserve germplasms and develop new cultivar of barley to improve its functional effects. In this study, with 25,104 barley germplasms in the National Agrobiodiversity Center, South Korea, the biodiversity index of species was much lower (1.17) than the origins (24.73) because of the presence of a biased species, Hordeum vulgare subsp. vulgare, but the species and origin of germplasms were significantly different with regard to genetic traits. In the clustering analysis based on genetic traits, we found that 97% barley germplasms could mostly be distributed between 1~7 clusters out of a total of 15 clusters; 'normal and uzu type', 'lodging', and 'loose smut' were commonly represented in the 1~7 clusters and some clusters showed specific differences in five genetic traits including 'growth habit'. In correlation of each genetic trait, the infection of 'barley yellow mosaic virus' was highly correlated to 'number of grains per spike'. '1000 grain weight' was weakly correlated with seven genetic traits including 'number of grains per spike'. Our analysis for barley's biodiversity can provide a useful guide to the species' phenotypes that need to be collected to conserve biodiversity and to breed new barley varieties.

Detection of Text Candidate Regions using Region Information-based Genetic Algorithm (영역정보기반의 유전자알고리즘을 이용한 텍스트 후보영역 검출)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • This paper proposes a new text candidate region detection method that uses genetic algorithm based on information of the segmented regions. In image segmentation, a classification of the pixels at each color channel and a reclassification of the region-unit for reducing inhomogeneous clusters are performed. EWFCM(Entropy-based Weighted C-Means) algorithm to classify the pixels at each color channel is an improved FCM algorithm added with spatial information, and therefore it removes the meaningless regions like noise. A region-based reclassification based on a similarity between each segmented region of the most inhomogeneous cluster and the other clusters reduces the inhomogeneous clusters more efficiently than pixel- and cluster-based reclassifications. And detecting text candidate regions is performed by genetic algorithm based on energy and variance of the directional edge components, the number, and a size of the segmented regions. The region information-based detection method can singles out semantic text candidate regions more accurately than pixel-based detection method and the detection results will be more useful in recognizing the text regions hereafter. Experiments showed the results of the segmentation and the detection. And it confirmed that the proposed method was superior to the existing methods.

Use of RAPD Fingerprinting for Discriminating Two Populations of Hilsa shad (Tenualosa ilisha Ham.) from Inland Rivers of Bangladesh

  • Shifat, Rehnuma;Begum, Anwara;Khan, Haseena
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.462-467
    • /
    • 2003
  • The Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) was applied to analyze the genetic variation of the Hilsa shad, Tenualosa ilisha Ham., from the two major inland rivers (Padma and Meghna) in Bangladesh. Twenty-eight random 10-mer primers were primarily scored in 8 individuals from each of the two locations. Fifteen primers, which gave polymorphism, were selected and used in the final analysis of 34 individuals from the two sites. Using these primers, 480 scorable DNA fragments were found, of which 98 (20.41%) were polymorphic. By comparing the RAPD banding patterns, variations were found between and within the populations. A dendrogram was constructed with the polymorphic fragments to analyze the genetic distances between the Hilsa shad populations. The results show two major clusters of Padma and Meghna, assuming different spawning populations with different stocks or races of Hilsa shad in the major Bangladesh rivers.

A initial cluster center selection in FCM algorithm using the Genetic Algorithms (유전 알고리즘을 이용한 FCM 알고리즘의 초기 군집 중심 선택)

  • 오종상;정순원;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.290-293
    • /
    • 1996
  • This paper proposes a scheme of initial cluster center selection in FCM algorithm using the genetic algorithms. The FCM algorithm often fails in the search for global optimum because it is local search techniques that search for the optimum by using hill-climbing procedures. To solve this problem, we search for a hypersphere encircling each clusters whose parameters are estimated by the genetic algorithms. Then instead of a randomized initialization for fuzzy partition matrix in FCM algorithm, we initialize each cluster center by the center of a searched hypersphere. Our experimental results show that the proposed initializing scheme has higher probabilities of finding the global or near global optimal solutions than the traditional FCM algorithm.

  • PDF

Assessment of genetic diversity and phylogenetic relationship of Limousin herds in Hungary using microsatellite markers

  • Szucs, Marton;Szabo, Ferenc;Ban, Beata;Jozsa, Csilla;Rozsa, Laszlo;Zsolnai, Attila;Anton, Istvan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.176-182
    • /
    • 2019
  • Objective: This study was conducted to investigate basic information on genetic structure and characteristics of Limousin population in Hungary. Obtained results will be taken into consideration when adopting the new breeding strategy by the Association of Hungarian Limousin and Blonde d'Aquitaine Breeders (AHLBB). Methods: Genetic diversity and phylogenetic relationship of 3,443 Limousin cattle from 16 different herds were investigated by performing genotyping using 18 microsatellite markers. Amplified DNA was genotyped using an automated genetic analyzer. Results: Mean of effective alleles ($n_e$) of the populations was 3.77. Population C had the lowest number of effective alleles (3.01) and the lowest inbreeding coefficient ($F_{IS}$) value (-0.15). Principal component analysis of estimated genetic distance ($F_{ST}$) values (p<0.000) revealed two herds (C and E) distinct from the majority of other Limousin herds. The pairwise $F_{ST}$ values of population C compared to the others (0.066 to 0.120) fell into the range of moderate genetic distance: 0.050 to 0.150, while population E displayed also moderate genetic distance ($F_{ST}$ values in range 0.052 to 0.064) but only to six populations (G, H, J, L, N, and P). $F_{ST(C-E)}$ was 0.148, all other pairs -excluding C and E herds- displayed low genetic distance ($F_{ST}$<0.049). Population D, F, I, J, K, L, N, O, and P carried private alleles, which alleles belonged to 1.1% of the individuals. Most probable number of clusters (K) were 2 and 7 determined by Structure and BAPS software. Conclusion: This study showed useful genetic diversity and phylogenetic relationship data that can be utilized for the development of a new breeding strategy by AHLBB. The results presented could also contribute to the proper selection of animals for further whole genome scan studies of Limousins.