• Title/Summary/Keyword: Genetic analyses

Search Result 984, Processing Time 0.027 seconds

Single Nucleotide Polymorphism in Patients with Moyamoya Disease

  • Park, Young Seok
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.6
    • /
    • pp.422-427
    • /
    • 2015
  • Moyamoya disease (MMD) is a chronic, progressive, cerebrovascular occlusive disorder that displays various clinical features and results in cerebral infarct or hemorrhagic stroke. Specific genes associated with the disease have not yet been identified, making identification of at-risk patients difficult before clinical manifestation. Familial MMD is not uncommon, with as many as 15% of MMD patients having a family history of the disease, suggesting a genetic etiology. Studies of single nucleotide polymorphisms (SNPs) in MMD have mostly focused on mechanical stress on vessels, endothelium, and the relationship to atherosclerosis. In this review, we discuss SNPs studies targeting the genetic etiology of MMD. Genetic analyses in familial MMD and genome-wide association studies represent promising strategies for elucidating the pathophysiology of this condition. This review also discusses future research directions, not only to offer new insights into the origin of MMD, but also to enhance our understanding of the genetic aspects of MMD. There have been several SNP studies of MMD. Current SNP studies suggest a genetic contribution to MMD, but further reliable and replicable data are needed. A large cohort or family-based design would be important. Modern SNP studies of MMD depend on novel genetic, experimental, and database methods that will hopefully hasten the arrival of a consensus conclusion.

Genetic Structure in Wild Populations of Ayu Plecoglossus altivelis in Korea and Japan

  • Han, Hyon-Sob;Taniguchi, Nobuhiko;Lee, Jong-Ha;Yoon, Moon-Geun
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • We investigated the genetic structure of Korean and Japanese ayu Plecoglossus altivelis populations by examining 669 individuals from 14 populations using three microsatellite loci. Genetic variation did not differ significantly among the populations examined in terms of allelic number and heterozygosity. Korean populations were genetically close to each other, implying that persistent gene flow has occurred in these populations. This suggests that eastern populations in Korea form a single large population and all of the Korean populations are distinct from the Japanese populations. Pairwise population $F_{ST}$ estimates, principal component analyses, and a neighbor-joining tree showed that genetic separation between the southern and pooled eastern coast populations was probably influenced by restricted gene flow. Hierarchical analysis of molecular variance (AMOVA) revealed a weak but significant genetic structure among three ayu groups (eastern and southern coasts of Korea and the Japan coast), and no genetic variation within groups. The estimated genetic population structure and potential applications of microsatellite markers may aid in the proper management of ayu populations.

Insilico Analysis for Expressed Sequence Tags from Embryogenic Callus and Flower Buds of Panax ginseng C. A. Meyer

  • Sathiyamoorthy, Subramaniyam;In, Jun-Gyo;Lee, Byum-Soo;Kwon, Woo-Seang;Yang, Dong-Uk;Kim, Ju-Han;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • Panax ginseng root has been used as a major source of ginsenoside throughout the history of oriental medicine. In recent years, scientists have found that all of its biomass, including embryogenic calli and flower buds can contain similar active ingredients with pharmacological functions. In this study, transcriptome analyses were used to identify different gene expressions from embryogenic calli and fl ower buds. In total, 6,226 expressed sequence tags (ESTs) were obtained from cDNA libraries of P. ginseng. Insilico analysis was conducted to annotate the putative sequences using gene ontology functional analysis, Kyoto Encyclopedia of Genes and Genomes orthology biochemical analysis, and interproscan protein functional domain analysis. From the obtained results, genes responsible for growth, pathogenicity, pigments, ginsenoside pathway, and development were discussed. Almost 83.3% of the EST sequence was annotated using one-dimensional insilico analysis.

Genetic Diversity and Population Structure of Mongolian Wheat Based on SSR Markers: Implications for Conservation and Management

  • Ya, Narantsetseg;Raveendar, Sebastin;Bayarsukh, N;Ya, Myagmarsuren;Lee, Jung-Ro;Lee, Kyung-Jun;Shin, Myoung-Jae;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Gi-An
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • Production of spring wheat, the major crop in Mongolia, accounts for 98% of the cultivated area. Understanding genetic variability in existing gene bank accessions is critical for collection, conservation and use of wheat germplasms. To determine genetic diversity and population structure among a representative collection of Mongolian local wheat cultivars and lines, 200 wheat accessions were analyzed with 15 SSR markers distributed throughout the wheat genome. A total of 85 alleles were detected, with three to five alleles per locus and a mean genetic richness of 5.66. Average genetic diversity index was 0.69, with values ranging from 0.37-0.80. The 200 Mongolian wheat accessions were mainly divided into two subgroups based on structure and phylogenetic analyses, and some phenotypes were divergent by the subgroups. Results from this study will provide valuable information for conservation and sustainable use of Mongolian wheat genetic resources.

Human-yeast genetic interaction for disease network: systematic discovery of multiple drug targets

  • Suk, Kyoungho
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.535-536
    • /
    • 2017
  • A novel approach has been used to identify functional interactions relevant to human disease. Using high-throughput human-yeast genetic interaction screens, a first draft of disease interactome was obtained. This was achieved by first searching for candidate human disease genes that confer toxicity in yeast, and second, identifying modulators of toxicity. This study found potentially disease-relevant interactions by analyzing the network of functional interactions and focusing on genes implicated in amyotrophic lateral sclerosis (ALS), for example. In the subsequent proof-of-concept study focused on ALS, similar functional relationships between a specific kinase and ALS-associated genes were observed in mammalian cells and zebrafish, supporting findings in human-yeast genetic interaction screens. Results of combined analyses highlighted MAP2K5 kinase as a potential therapeutic target in ALS.

Genetic Variation in Fusarium oxysporum f. sp. fagariae Populations Based RAPD and rDNA RFLP Analyses

  • Nagaraian, Gopal;Nam, Myeong-Hyeon;Song, Jeong-Young;Yoo, Sung-Joon;Kim, Hong-Gi
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.264-270
    • /
    • 2004
  • Fusarium oxysporum f. sp. fragariae is a fungal pathogen causing strawberry wilt disease. The random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLPs) of intergenic spacer (IGS) region of rDNA were used to identify genetic variation among 22 F. oxysporum f. sp. fragariae isolates. All isolates could be distinguished from each other by RAPD analysis and RFLP of 2.6 kb amplified with primer CNS1 and CNL12 for IGS region of rDNA. Cluster analysis using UPGMA showed eight distinct clusters based on the banding patterns obtained from RAPD and rDNA RFLP. These results indicate that F. oxysporum f. sp. fragariae isolates are genetically distinct from each other, There was a high level genetic variation among F. oxysporum f. sp. fragariae.

Identification of inseticidal compound SR 2077 from Actinomycetes isolate No. 2077 (방선균 분리주 No. 2077이 생산하는 살충성 물질 SR 2077의 구조 동정)

  • Oh, Sei-Ryang;Lee, Hyeong-Kyu;Choi, Soo-Keun;Kim, Jeong-Il
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.234-236
    • /
    • 1994
  • During the screening of insecticidal compounds from soil microorganisms, SR 2077 was isolated from the metabolites of Actinomycetes isolate No. 2077 and identified as albocycline by UV and NMR data analyses.

  • PDF

Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.1035-1053
    • /
    • 2015
  • A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases.

The taxonomic status of Angelica purpuraefolia and its allies in Korea : Inferences based on ITS molecular phylogenetic analyses

  • Lee, Byoung Yoon;Kwak, Myounghai;Han, Jeong Eun;Kim, Se-Jung
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.3
    • /
    • pp.209-214
    • /
    • 2011
  • The taxonomy of the umbelliferous species Angelica amurensis and its allies was reviewed on the basis of molecular phylogenies derived from sequences of nuclear ribosomal DNA internal transcribed spacer (ITS) regions. Strict consensus of six minimal length 119-step trees derived from equally weighted maximum parsimony analysis of combined nuclear rDNA ITS1 and ITS2 sequences from 29 accessions of Angelica and outgroups indicated that Angelica purpuraefolia, known to be endemic to Korea, is the same species as A. amurensis. Comparisons of sequence pairs across both spacer regions revealed identity or 1-2 bp differences between A. purpuraefolia and A. amurensis. These results indicated that the two taxa are not distinguished taxonomically. Also, nuclear rDNA ITS regions are discussed as potential barcoding loci for identifying Korean Angelica.