• 제목/요약/키워드: Genetic Relationships

검색결과 672건 처리시간 0.028초

ISSR에 의한 잔디속 식물의 DNA 다형성과 유전적 관계 평가 (DNA Polymorphism and Assessments of Genetic Relationships in genus Zoysia Based on Simple Sequence Repeat Markers)

  • 허만규
    • 생명과학회지
    • /
    • 제25권3호
    • /
    • pp.257-262
    • /
    • 2015
  • 한국에서 채집한 잔디속(genus Zoysia) 식물 종의 유전적 변이를 단순 서열 반복(Inter-Simple Sequence Repeat Markers, ISSR) 마커 시스템으로 조사하였다. 8개의 ISSR 시발체를 이용한 중합효소 사슬 증폭반응에서 86개의 분절의 증폭물을 얻었으며 이 중 76(87.1%)개 분절이 다형성을 나타내었다. ISSR 마커 시스템에서 다형성 정보 지수(PIC)는 0.848이었다. 다형성 대립유전자좌위의 퍼센트(Pp)는 41.2%에서 44.7%까지 나타내었다. 네이(Nei)의 유전자 다양성(H)은 0.149에서 0.186까지 이며 평균은 0.170이었다. 샤논(Shannon)의 정보 지수(I)의 평균값은 0.250이었다. 대립유전자좌위에 근거하여 전체 변이에서 종 간 차이를 나타내는 변이의 몫(GST)은 0.601였다. 이는 전체변이의 약 60.1%는 종 간에 있음을 의미한다. 따라서 변이의 약 39.9%는 종 내에 있었다. GST에 근거한 유전자 흐름(이동)은 잔디속 간에는 대단히 낮았다(Nm = 0.332). 계통도는 3개의 뚜렷한 분지군으로 분리되었다. 왕잔디(Zoysia macrostachya)와 금잔디(Z. tenuifolia) 분지군, 갯잔디(Z. sinica) 단독 분지군, 잔디(Z .japonica) 단독 분지군이었다. 결론적으로 잔디속 식물에 대한 ISSR 분석은 유전적 변이를 탐지하는데 유용하며, 종을 구분하는 유전자형의 대한 식별력을 주었다.

Genetic diversity and population structure among accessions of Perilla frutescens (L.) Britton in East Asia using new developed microsatellite markers

  • Sa, Kyu Jin;Choi, Ik?Young;Park, Kyong?Cheul;Lee, Ju Kyong
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1319-1329
    • /
    • 2018
  • SSRs were successfully isolated from the Perilla crop in our current study, and used to analyze Perilla accessions from East Asia. Analyses of the clear genetic diversity and relationship for Perilla crop still remain insufficient. In this study, 40 new simple sequence repeat (SSR) primer sets were developed from RNA sequences using transcriptome analysis. These new SSR markers were applied to analyze the diversity, relationships, and population structure among 35 accessions of the two cultivated types of Perilla crop and their weedy types. A total of 220 alleles were identified at all loci, with an average of 5.5 alleles per locus and a range between 2 and 10 alleles per locus. The MAF (major allele frequency) per locus varied from 0.229 to 0.943, with an average of 0.466. The average polymorphic information content (PIC) value was 0.603, ranging from 0.102 to 0.837. The genetic diversity (GD) ranged from 0.108 to 0.854, with an average of 0.654. Based on population structure analysis, all accessions were divided into three groups: Group I, Group II and the admixed group. This study demonstrated the utility of new SSR analysis for the study of genetic diversity and population structure among 35 Perilla accessions. The GD of each locus for accessions of cultivated var. frutescens, weedy var. frutescens, cultivated var. crispa, and weedy var. crispa were 0.415, 0.606, 0.308, and 0.480, respectively. Both weedy accessions exhibited higher GD and PIC values than their cultivated types in East Asia. The new SSR primers of Perilla species reported in this study may provide potential genetic markers for population genetics to enhance our understanding of the genetic diversity, genetic relationship and population structure of the cultivated and weedy types of P. frutescens in East Asia. In addition, new Perilla SSR primers developed from RNA-seq can be used in the future for cultivar identification, conservation of Perilla germplasm resources, genome mapping and tagging of important genes/QTLs for Perilla breeding programs.

ISSR Markers of Authentication for Korean and Chinese Platycodon Grandiflorum

  • Shin, Soon-Shik;Choi, Ju-Soo;Huh, Man-Kyu
    • 동의생리병리학회지
    • /
    • 제23권1호
    • /
    • pp.214-218
    • /
    • 2009
  • Platycodon grandiflorum is a long-lived herbaceous and one of the very important herbal medicine and foods. P. grandiflorum is called do-ra-ji in Korea. Inter-simple sequence repeats (ISSR) markers were performed in order to analyse the phenetic relationships of four accessions of P. grandiflorum. Wild groups had higher expected diversity, 0.164 for Korean and 0.157 for Chinese accessions than those of cultivated groups, 0.079 for Korea and 0.059 for China. The total genetic diversity in P. grandiflorum was 0.268 across species and the value was lower than average values for species with similar life history traits. The patchy distribution and domestication are proposed as possible factors contributing to low genetic diversity. An assessment of the proportion of diversity within species, HAccession/HSpecies, indicated that about 57.1% the total genetic diversity was among species. Thus, the majority of genetic variation (42.9%) resided within accessions. The estimated Nm (the number of migrants per generation) was very low among four accessions (mean Nm = 0.376). The low estimate of Nm indicated that gene flow was not extensive among four accessions. ISSR01-02 locus can be recognized as an unique locus of Korean groups (wild and cultivated accessions). Thus the locus can be used to distinguish Korean accessions from Chinese accessions. ISSR04-06 locus was found specific to Chinese groups (wild and cultivated accessions) and was not shown in Korean accessions. Although the size of sampling was not large enough for P. grandiflorum, the analyses of ISSRs will certainly provide an enhanced view on the phylogeny of accessions.

당귀 종판별을 위한 엽록체 기반 SSR 마커 개발 (Development of Chloroplast DNA-Based Simple Sequence Repeat Markers for Angelica Species Differentiation)

  • 박상익;김세림;길진수;이이;김호방;이정호;김성철;정찬식;엄유리
    • 한국약용작물학회지
    • /
    • 제24권4호
    • /
    • pp.317-322
    • /
    • 2016
  • Background: In the herbal medicine market, Angelica gigas, Angelica sinensis, and Angelica acutiloba are all called "Danggui" and used confusingly. We aimed to assess the genetic diversity and relationships among 14 Angelica species collected from different global seed companies. Toward this aim we developed DNA markers to differentiate the Angelica species. Methods and Results: A total of 14 Angelica species, A. gigas, A. acutiloba, A. sinensis, A. pachycarpa, A. hendersonii, A. arguta, A. keiskei, A. atropurpurea, A. dahurica, A. genuflexa, A. tenuissima, A. archangelica, A. taiwaniana, and A. hispanica were collected. The genetic diversity of all 14 species was analyzed by using five chloroplast DNA-based simple sequence repeat (SSR) markers and employing the DNA fragment analysis method. Each primer amplified 3 - 12 bands, with an average of 6.6 bands. Based on the genetic diversity analysis, these species were classified into specific species groups. The cluster dendrogram showed that the similarity coefficients ranged from 0.77 to 1.00. Conclusions: These findings could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Angelica species. The analysis of polymorphic SSRs could provide an important experimental tool for examining a range of issues in plant genetics.

Genetic Analysis of the Diamondback Moth, Plutella xylostella, Collected from China Using Mitochondrial COI Gene Sequence

  • Li, Jianhong;Choi, Yong Soo;Kim, Iksoo;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권1호
    • /
    • pp.137-144
    • /
    • 2004
  • The diamondback moth, Plutella xylostella, is notorious because of its extensive potential and actual dispersal ability. Previously, the Korean populations of P. xylostella was extensively collected and analyzed for their genetic population structure using a portion of mitochondrial DNA (mtDNA). One of the postulated characteristics on population genetic structure of the species includes the presence of heterogeneous haplotypes, possibly possessed by some dispersed ones from neighboring countries. In this study, we sequenced ten P. xylostella collected from China (∼2,000 km away from the middle part of Korea) to know the genetic relationships of these to the Korean P. xylostella. Sequence analysis of the identical portion of COI gene resulted in five haplotypes with the sequence divergence ranging from 0.5% (two nucleotides) to 1.1 % (five nucleotides) among them and from 0.7% (three) to 2.5% (11) to the pre-existing 52 Korean haplotypes. Phylogenetic analysis showed that the Chinese P. xylostella were neither clearly separated from the Korean haplotypes nor clustered with one heterogeneous Korean haplotype. This result reinforces the significance of gene flow in this species and suggests to exclude the possibility that the heterogeneous Korean haplotypes may have emigrated from China, where our samples were obtained, although further extensive investigation is required.

Genotypic Variation in Flowering and Maturing Periods and Their Relations with Plant Yield and Yield Components in Soybean

  • Truong Ngon Trong;Van Kyu-Jung;Kim Moon-Young;Lee Suk-Ha
    • 한국작물학회지
    • /
    • 제51권2호
    • /
    • pp.163-168
    • /
    • 2006
  • Improvement of crop yield can be achieved through understanding genetic variation in reproductive characters and its impact on yield components. The present study was performed to evaluate genetic diversity for reproductive growth characters in exotic germplasm resources and to determine the relationships between developmental and growth periods with yield and yield components in soybean cultivar groups. For phenotypic evaluation such as reproductive and agronomic traits, a total of 80 indigenous and exotic soybean cultivars collected from four different geographical regions (China, Japan, Korea, and Vietnam) were grown from May to November of 2003 at the Seoul National University Farm, Suwon, Korea ($127^{\circ}02'E$ longitude, $37^{\circ}26'N$ latitude). Most of all the characters exhibited wide range of phenotypic variation, of which pod number, seed number, and plant yield showed greater range as compared to other characters. Korean cultivar groups showed greater diversity than the other cultivar groups in seven characters. Correlation analysis showed that days to flowering (DTF) and days to maturity (DTM) had close association with agronomic traits as well as yield and yield components. Both DTF and DTM had positive correlation with the other characters except one hundred seed weight. Stepwise multiple linear regression revealed that seed and pod number were identified as being significant for plant yield. The results in this study indicated wide variation in agronomic traits including DTF and DTM, suggesting the valuable genetic resources in a soybean breeding program.

S-haplotypes and Genetic Diversity in 'Danji' Radish (Raphanus sativus L. var. hortensis)

  • Ahn, Yulkyun;Kim, Hyukjun;Han, Dongyeop;Park, Younghoon
    • 원예과학기술지
    • /
    • 제32권2호
    • /
    • pp.210-216
    • /
    • 2014
  • The distribution of S-haplotypes and genetic relationships were evaluated for 47 accessions of 'Danji' radish (Raphanus sativus L. var. hortensis Baker f. gigantissimus Makino) originating from Jeju Island in South Korea. A total of 22 S-haplotype-specific SCAR markers for the S locus glycoprotein (SLG) and S receptor kinase (SRK) loci were tested, and six primer sets amplified locus-specific PCR fragments from at least one 'Danji' radish accession. S5 and S21 alleles atthe SLG locus were the most frequently distributed, and detected from 87.5% and 64.6% of the accessions, respectively. The frequency of the class-II haplotype at the SLG locus was 75%, more frequent than the class-I haplotype. The S23 allele at the SRK locus was detected from 7 accessions. Grouping of the accessions based on S-allele composition revealed three major groups, while 8 accessions showed a unique allelic composition. The genetic diversity of 47 'Danji' radishes and 1 'Gwandong' radish were also evaluated with 38 RAPD primers. A total of 312 bands were scored, and showed that 138 bands (44.2%) were monomorphic among the accessions, whereas 174 (55.8%) bands were polymorphic. Polymorphism rates ranged from 0.2 to 1.0, indicating significant variations in detecting polymorphism across RAPD primers. The genetic similarity coefficients among all pairs of the 48accessions varied from 0.62 to 0.93, and 42% of the comparisons exhibited values higher than 0.85. All the cultivars could be distinguished based on the DNA fingerprints revealed by RAPD. The comparisons between the dendrograms based on S-haplotypes and RAPDs indicate an unrelated and sporadic distribution for several accessions; however, there was a tendency for accessions with the same S-allelic composition to group into the same cluster.

Differences and Variations among Anguilla japonica, Muraenesox cinereus and Conger myriaster from the Yellow Sea

  • Yoon, Jong-Man
    • 한국발생생물학회지:발생과생식
    • /
    • 제19권3호
    • /
    • pp.163-166
    • /
    • 2015
  • Genomic DNAs were extracted from the muscle of twenty-one specimens of three eel species collected in Anguilla japonica (AJ), Muraenesox cinereus (MC) and Conger myriaster (CM) from the Yellow Sea, respectively. In the present study, 7 oligonucleotides primers generated 191 specific loci in the AJ species, 226 in the (MC) species and 181 in the CM species, respectively. The primer BION-02 generated the most loci (a total of 83), with an average of 11.86 in the AJ species. The specific loci generated by oligonucleotides primers exhibited inter-individual-specific characteristics, thus revealing DNA polymorphisms. With regard to average bandsharing value (BS) results, individuals from Conger myriaster species (0.808) exhibited higher bandsharing values than did individuals from Muraenesox cinereus species (0.729) (P<0.05). The longest genetic distance (0.430) displaying significant molecular difference was also between individual no. 01 within Anguilla japonica eel species and individual no. 04 within Anguilla japonica species. In this study, the dendrogram resulted from reliable seven oligonucleotides primers, indicating three genetic clusters composed of group I (ANGUILLA 01~ANGUILLA 07), group II (MURAENESOX 08~MURAENESOX 14) and group III (CONGER 15~CONGER 21). The existence of species differentiation and DNA polymorphisms among three eel species were detected by PCR analysis. As mentioned above, a dendrogram revealed close relationships between individual identities within three eel species. High levels of a significant genetic distance among three eel species showed this PCR approach is one of the most suitable tools for individuals and/or species biological DNA studies.

RAPD를 이용한 들깨 유전자원의 유전적 변이 분석 (Analysis of Genetic Variation of Perilla Germplasm Using RAPD)

  • 김도훈;양보경;김현경;김나영;정순재;김익수;남재성;이재헌;정대수
    • Journal of Plant Biotechnology
    • /
    • 제30권3호
    • /
    • pp.221-226
    • /
    • 2003
  • Genetic variation of Perilla germplasms was investigated using RAPD markers. Forty-two Perilla frutescens lines and cultivars collected form locals were subjected to RAPD analysis using 220 primers. Among them only 13 primers showed polymorphic bands and these 13 primers provided a total of 144 bands, consist of 115 polymorphic and 29 monomorphic ones. The polymorphic bands were subjected to phylogenetic analysis using UPGMA and maximum parsimony (MP) methods. In the UPGMA method, similarity coefficiency of 42 Perilla frutescens lines and cultivars ranged from 0 to 0.7842. The dendrogram of 42 lines and cultivars obtained through UPGMA method resulted in two major groups, and the similar clustering pattern was found by MP method, suggesting Perilla germplasms utilized in this study truly can be divided into two major groups. Although the two major groups were consistent roughly with their phenotypes (under of node, weight of 1,000 grains, and oil content), in detail, much inconsistency also was present.

Differences in Epidermal Growth Factor Receptor Gene Mutations and Relationship with Clinicopathological Features in NSCLC Between Uygur and Han Ethnic Groups

  • Zhang, Yan;Wang, Qiang;Han, Zhi-Gang;Shan, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2879-2883
    • /
    • 2013
  • Objective: To investigate differences in mutations of epidermal growth factor receptor (EGFR) gene and relationships with clinicopathological features in patients with non-small cell lung cancer (NSCLC) between Uygur and Han ethnic groups. Methods: The Scorpions amplification refractory mutation system (Scorpions ARMS) was used to measure mutations in exons 18, 19, 20 and 21 of the EGFR gene in paraffin-embedded tumor tissue from NSCLC cases, and statistical analysis was performed to investigate links with clinicopathological features in different histological types of NSCLC. Results: Results from ARMS testing showed EGFR mutations in tumor tissues from six (6) of 50 NSCLC patients of Uygur ethnic group, with a positive rate of 12.0%; four of them (4) had exon 19 deletion in EGFR, and two (2) had L858R point mutation in exon 21 of EGFR. Statistically significant difference was noted in EGFR genetic mutation between adenocarcinoma and non-adenocarcinoma (P < 0.05), but no differences with gender, age group, smoking status, or stage (P > 0.05). EGFR mutations were detected in tumor tissues from 27 of 49 NSCLC patients of Han ethnic group, with a positive rate of 55.1%; 19 of them had exon 19 deletions, seven (7) had L858R point mutations in exon 21 of EGFR and one (1) had mutations in both exon 18 G719X and exon 20 T790M of EGFR. Statistically significant differences were noted in EGFR genetic mutations between genders and between adenocarcinoma and non-adenocarcinoma (P<0.05), but not with age group, smoking status, or stage (P > 0.05). Conclusion: Statistically significant differences were noted in the positive rates of EGFR genetic mutations in NSCLC patients between Uygur and Han ethnic groups, with lower positive rates for the Uygur cases.