• Title/Summary/Keyword: Genetic Progress

Search Result 225, Processing Time 0.022 seconds

Effect of Proportion of Recorded Cows Inseminated by Young A. I. Bulls on Genetic Improvement in Japanese Holstein Population

  • Terawaki, Y.;Shimizu, H.;Fukui, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.4
    • /
    • pp.410-415
    • /
    • 1998
  • The effects of the proprotion of cows inseminated by young A. I. bulls on genetic improvement in the Japanese Holstein population were examined using a simulation technique. The proportion of recorded cows inseminated by young A. I. bulls was assumed to be from 10% to 100% of the total number of recorded cows. The expected total genetic improvement was estimated for all cows and recorded and non recorded cows. The effects of the above were remarkable in the schemes that proven sires were used to produce recorded and non recorded cows for a limited time. Also the increase in the rates for -the expected total genetic improvement was larger when the proportion of recorded cows that were inseminated by young A. I. bulls was about 10% to 40%. When the expected total genetic improvement was estimated for the entire population, we found that the highest values were in a range of about 40 to 60% recorded cows that were inseminated by young A. I. bulls. On the other hand, the expected total genetic improvement that was only estimated in recorded cows dramatically decreased for more than 40% of the recorded cows. The results of this study showed that the optimal proportion of recorded cows inseminated with young A. I. bulls should be about 30% in the Japanese Holstein population.

Finding Genetic Risk Factors of Gestational Diabetes

  • Kwak, Soo Heon;Jang, Hak C.;Park, Kyong Soo
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.239-243
    • /
    • 2012
  • Gestational diabetes mellitus (GDM) is a complex metabolic disorder of pregnancy that is suspected to have a strong genetic predisposition. It is associated with poor perinatal outcome, and both GDM women and their offspring are at increased risk of future development of type 2 diabetes mellitus (T2DM). During the past several years, there has been progress in finding the genetic risk factors of GDM in relation to T2DM. Some of the genetic variants that were proven to be significantly associated with T2DM are also genetic risk factors of GDM. Recently, a genome-wide association study of GDM was performed and reported that genetic variants in CDKAL1 and MTNR1B were associated with GDM at a genome-wide significance level. Current investigations using next-generation sequencing will improve our insight into the pathophysiology of GDM. It would be important to know whether genetic information revealed from these studies could improve our prediction of GDM and the future development of T2DM. We hope further research on the genetics of GDM would ultimately lead us to personalized genomic medicine and improved patient care.

Recent advances in breeding and genetics for dairy goats

  • Gipson, Terry A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1275-1283
    • /
    • 2019
  • Goats (Capra hircus) were domesticated during the late Neolithic, approximately 10,500 years ago, and humans exerted minor selection pressure until fairly recently. Probably the largest genetic change occurring over the millennia happened via natural selection and random genetic drift, the latter causing genes to be fixed in small and isolated populations. Recent human-influenced genetic changes have occurred through biometrics and genomics. For the most part, biometrics has concentrated upon the refining of estimates of heritabilities and genetic correlations. Heritabilities are instrumental in the calculation of estimated breeding values and genetic correlations are necessary in the construction of selection indices that account for changes in multiple traits under selection at one time. Early genomic studies focused upon microsatellite markers, which are short tandem repeats of nucleic acids and which are detected using polymerase chain reaction primers flanking the microsatellite. Microsatellite markers have been very important in parentage verification, which can impact genetic progress. Additionally, microsatellite markers have been a useful tool in assessing genetic diversity between and among breeds, which is important in the conservation of minor breeds. Single nucleotide polymorphisms are a new genomic tool that have refined classical BLUP methodology (biometric) to provide more accurate genomic estimated breeding values, provided a large reference population is available.

Estimates of Genetic Parameters and Genetic Trends for Production Traits of Inner Mongolian White Cashmere Goat

  • Bai, Junyan;Zhang, Qin;Li, Jinquan;Dao, Er-Ji;Jia, Xiaoping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • Two different animal models, which differ in whether or not taking maternal genetic effect into account, for estimating genetic parameters of cashmere weight, live body weight, cashmere thickness, staple length, fiber diameter, and fiber length in Inner Mongolia White Cashmere Goat were compared via likelihood ratio test. The results indicate that maternal genetic effect has significant influence on live body weight and cashmere thickness, but no significant influence on the other traits. Using models suitable for each trait, both genetic parameters and trends were analyzed with the MTDFREML program. Heritability estimates from single trait models for cashmere weight, live body weight, cashmere thickness, staple length, fiber diameter and fiber length were found to be 0.30, 0.07, 0.21, 0.29, 0.28 and 0.21, respectively. Genetic correlation estimates from two-trait models between live body weight and all other traits (-0.06~0.07) was negligible, as were those between fiber diameter and all other traits (-0.01~0.03) except cashmere thickness (0.19). Cashmere weight and staple length had moderate to low genetic correlations with other traits (-0.24~0.39 and -0.24~0.34, respectively) except for live body weight and fiber diameter. Cashmere thickness had a strong genetic correlation with fiber length (0.81), and low genetic correlation with other traits (0.19~0.34) except live body weight. Genetic trend analysis suggests that selection for cashmere weight was very effective, which has led to the slow genetic progress of cashmere thickness and fiber length due to their genetic correlations with cashmere weight. The selection for live body weight was not effective, which was consistent with its low inheritability.

Protection of Human Genetic Information and Citizens Participation (인간 유전정보 보호와 시민참여)

  • Lee Young-Hee;Kim Myoung-Jin;Kim Byoung-Soo
    • Journal of Science and Technology Studies
    • /
    • v.3 no.1 s.5
    • /
    • pp.41-73
    • /
    • 2003
  • Personal genetic information is information about a person's genetic characteristics, which may reveal important information about private matters such as susceptibility to disease. Progress in genetics makes it much easier to obtain personal genetic information, and this leads to concerns about confidentiality and security of genetic information, and about possible genetic discrimination. This paper examines social issues related to human genetic information in terms of individual identification, diagnosis of diseases, and non-medical genetic test, and then tries to provide desirable citizens participation methods that can be used when making public policies related to genetic information protection.

  • PDF

Diagnosis and Treatment of Myelodysplastic Syndrome in the Era of Genetic Testing (유전자 검사 시대 골수형성이상증후군의 진단과 치료)

  • Junshik Hong
    • The Korean Journal of Medicine
    • /
    • v.99 no.1
    • /
    • pp.11-16
    • /
    • 2024
  • Myelodysplastic syndrome (MDS) is a heterogeneous disorder with diverse prognoses influenced by cytopenias, genetic variants, and myeloblast proportions in the bone marrow. Accurate prognosis prediction and tailored treatment plans are essential. The International Prognostic Scoring System-Molecular (IPSS-M), which additionally reflects the impact of MDS-related genetic mutations to the clinical and laboratory information, is anticipated to offer superior prognostic accuracy compared to existing systems like the Revised International Prognostic Scoring System (IPSS-R). Despite its statistical complexity, its web-based calculation and ease of discussing results with patients using intuitive data sets provide notable advantages. Progress in MDS treatment, exemplified by effective anemia correction with an erythropoiesis-maturation agent in SF3B1-mutated cases and efforts to refine poor prognoses in TP53-mutated cases, reflects the evolving landscape of genetic-based interventions in MDS. Advancements in genetic diagnostic technology, combined with enhanced knowledge of the bone marrow niche, are anticipated to lead to significant improvement in MDS treatment outcomes in the future.

Genetic parameters and litter trait trends of Danish pigs in South Vietnam

  • Tinh, Nguyen Huu;Hao, Tran Van;Bui, Anh Phu Nam
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1903-1911
    • /
    • 2021
  • Objective: The objective of this study was to estimate the genetic parameters and various litter trait trends of Danish pigs in South Vietnam, including the number born alive (NBA), number weaned (NW), and litter weight at the 21st day (LW21). Methods: Records of 936 Yorkshire sows with 3361 litters and 973 Landrace sows with 3161 litters were used to estimate the variance components, genetic parameters, and trends of NBA, NW, and LW21. The restricted maximum likelihood method was applied using VCE6 software to obtain the variance components and genetic parameters. Thereafter, the best linear unbiased prediction procedure with an animal model was applied using PEST software to estimate the breeding values of the studied traits. Results: The heritability estimates were low, ranging from 0.12 to 0.21 for NBA, 0.03 to 0.04 for NW, and from 0.11 to 0.13 for LW21. The genetic correlation between the NBA and NW was relatively strong in both breeds, at 0.77 and 0.60 for Yorkshire and Landrace, respectively. Similarly, the genetic correlation between the NW and LW21 was considerably stronger in Landrace pigs (0.71) than in Yorkshire pigs (0.48). The estimates of annual genetic progress were 0.0431, 0.0233, and 0.0461 for NBA, NW, and LW21 in Landrace pigs and 0434, 0.0202, and 0.0667 for NBA, NW, and LW21 in Yorkshire pigs, respectively. Conclusion: The positive genetic trends estimated for the additive genetic values of the selected traits indicated that the current breeding system has achieved favorable results.

Conceptional Design of HTS Magnets for 600 kJ Class SMES

  • Park Myung-Jin;Kwak Sang-Yeop;Kim Woo-Seok;Lee Seung-Wook;Lee Ji-Kwang;Choi Kyeong-Dal;Jung Hyun-Kyo;Seong Ki-Chul;Hahn Song-yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.24-27
    • /
    • 2005
  • Development of a 600 kJ class Superconducting Magnetic Energy Storage (SMES) system is being in progress by Korea Electrotechnology Research Institute(KERI). High temperature superconducting (HTS) wires are going to be used for the windings for the SMES system is presented in this paper. We considered BSCCO-2223 wire for the HTS windings and the operating temperature of the winding was decided to be 20 K which will be accomplished by conduction cooling method using cyro-coolers. Auto-Tuning Niching Genetic Algorithm was adopted for an optimization method of the HTS magnets in the SMES system. The objective function of the optimal process was minimizing total amount of the HTS wire. As a result, we obtained output parameters for optimization design of 600 kJ class SMES under several constrained conditions. These HTS windings are going to be applied to the SMES system whose purpose is stabilization of the power grid.

Recent research progress on the functional roles and regulatory mechanisms of SMALL AUXIN UP RNA gene family (SMALL AUXIN UP RNA 유전자 집단의 기능과 조절 메커니즘에 대한 최근 연구 동향)

  • Lee, Sang Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.183-189
    • /
    • 2018
  • The plant hormone auxin regulates the overall metabolic processes essential for plant growth and development. Auxin signaling is mediated by early auxin response genes, which are classified into three major families: AUXIN/INDOLE ACETIC ACID (AUX/IAA), GRETCHEN HAGEN3 (GH3) and SMALL AUIN UP RNA (SAUR). The SAUR gene family is the largest family among early auxin response genes and encodes the small and highly unstable gene products. The functional roles of SAUR genes have remained unclear for many years. The traditional genetic and molecular studies on the SAUR functions have been hampered by their likely genetic redundancy and tandem arrays of highly related genes in the plant genome, together with the molecular characteristics of SAUR. However, recent studies have suggested possible roles of SAUR in a variety of tissues and developmental stages in accordance with the novel approaches such as gain-of-function and RNA silencing techniques. In this review, the recent research progress on the functional roles and regulatory mechanisms of SAUR and a set of possible future works are discussed.

A study on improvement of The Operating Characteristics of the low cost BLDC using GA controller (GA 제어기를 사용한 저가형 BLDC의 동작특성 개선에 관한 연구)

  • Park Jong-Won;Hong Jeng-Pyo;Cho Hag-Lae;Park Sung-Jun;Won Tae-Hyun;Jung Young-Seok;Kwon Soon-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.447-450
    • /
    • 2002
  • A study on control of BLDC Is studying In progress, because of radical increase of survo motor at industrial machine and home machine. Nowaday, we study on control of BLDC, because of radical increase of survo motor at Industry and home. Although control ratio and output of the unit volume are good than the others , BLDC motor demands high cost. Therefor, the study on low cost BLDC have square wave back-emf is studing in progress. Therefor, BLDC Motor was studied to reduce high cost that have square wave back-emf at recently. This paper shows that BLDC Motor, developed highly responsility by using Genetic Algorithm(GA) that the advantages of learning ability, Also, this paper shows experiment and simulation at 200W BLDC that have squarewave back-emf by using Genetic Algorithm. At the result of this methods, the study prove experiment's right.

  • PDF