• 제목/요약/키워드: Genetic Progress

검색결과 224건 처리시간 0.024초

Present Status and Prospects of in vitro Production of Secondary Metabolites from Plant sin China

  • Chen, Xian-Ya;Xu, Zhi-Hong
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1995년도 식물학심포지움 식물로부터 유용 2차대사산물의 생산 PRODUCTION OF USEFUL SECONDARY METABOLITES FROM PLANTS
    • /
    • pp.40-56
    • /
    • 1995
  • During the past two decades, China has seen her great progress in plant biotechnology. Since the Chinese market of herb medicine is huge, while the plant resources are shrinking, particular emphasis has been placed in plant tissue and cell cultures of medicinal plants, this includes fast propagation, protoplast isolation and regeneration, cell suspension cultures and large scale fermentation. To optimize culture conditions for producing secondary compounds in vitro, various media, additives and elicitors have been tested. Successful examples of large scale culture for the secondary metabolite biosynthesis are quite limited : Lithospermum ery throrhizon and Arnebia euchroma for shikonin derivatives, Panax ginseng, P. notoginseng, P. quinquefolium for saponins, and a few other medicinal plants. Recent development of genetic transformation systems of plant cells offered a new approach to in vitro production of secondary compounds. Hairy root induction and cultures, by using Ri-plasmid, have been reported from a number of medicinal plant species, such as Artemisia annua that produces little artemisinin in normal cultured cells, and from Glycyrrhiza uralensis. In the coming five years, Chinese scientists will continue their work on large scale cell cultures of a few of selected plant species, including Taxus spp. and A. annua, for the production of secondary metabolites with medicinal interests, one or two groups of scientists will be engaged in molecular cloning of the key enzymes in plant secondary metabolism.

  • PDF

소 핵이식 수정란에 의한 산자 생산에 관한 연구 (Systems for Production of Calves after Embryo Transfer of Nuclear Transplant Embryos)

  • 황우석
    • 한국수정란이식학회지
    • /
    • 제10권1호
    • /
    • pp.83-90
    • /
    • 1995
  • Production of calves after transfer of nuclear transplant embryos is the latest technology to be applied in commercial livestock breeding. The objective of this study was to establish an efficient procedure to produce offsprings from nuclear transplant embryos. The fusion rates (72.7% vs. 80.8%), cleavage rates (62.5% vs. 71.4%) and rates of development in vitro (12.0% vs. 15.2%) of nuclear transplant embryos were not significantly different between 30 and 40h maturation age of cytoplast. The in vivo and in vitro-derived embryos as nuclei donor were used in this system of bovine nuclear transplantation. Fusion rates of nuclear transplant embryos were not significantly different between in vivo and in vitro-derived embryos (73.0 and 79.2%, respectively). The percentage of embryos reaching the morulae or blastocysts were 21.8% for in vivo-derived embryos and 11.9% for in vitro-derived embryos (p<0.01). Pregnancy rates after embryo transfer of nuclear transplant embryos were not significantly different between in vivo and in vitro-derived embryos (45.9 and 40.5%, respectively). However, calving rates after embryo transfer of nuclear transplant embryos were significantly higher in the in vivo-derived embryos than in vitro (p<0.01). Further research for age of cytoplast and use of in vitro-derived embryos as nuclei donor is required in this system. In conclusion, these results clearly show that the use of in vitro-derived oocytes as recipient cytoplast can improve the nuclear transplant system for genetic progress in cattle.

  • PDF

Lifetime Production of Kajli Ewes at Khushab and Khizerabad : Reproduction and Lamb Production as Affected by Ewe Longevity

  • Qureshi, M.A.;Nawaz, M.;Khan, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권4호
    • /
    • pp.408-415
    • /
    • 1997
  • Data from 5,311 ewes and 13,076 lambing from 1977 through 1994 were used to analyse both annual and cumulative outputs in terms on total number of lambs born, total lamb weight weaned and total wool produced per ewe for ewe longevity 1 to 8 depending on their productive life in the flock. Ewes at Khushab produced 0.08 more lambs per parturition than ewes at Khizerabad; however, 0.39 less lambs were weaned at Khushab than at Khizerabad. Similarly, cumulative number of lambs born was more at Khushab flock than Khizerabad flock (p < .01). However, total weight of lambs weaned was greater at Khizerabad than Khushab flock (p < .01) for each ewe longevity. Most ewes (35%) were sold/replaced just after their first parturition (i. e. ewe longevity 1). The overall mean for annual sale/replacement was 32 and 23% at Khushab and Khizerabad, respectively. Distribution of growth and reproductive traits from 1977-94 did not show upward or downward trend inspite of heavy sale/replacement except yearly variation. Lack of any genetic progress over the year suggested that random breeding was employed without any scientific selection programme. Annual means for lambs born, lambs weaned and weight of lambs weaned per ewe present in the flock were the highest for ewe longevity 2 compared with other ewe longevity groups. Relative efficiency in terms of net income was highest for ewe longevity 5 followed by ewe longevity 4 and 6 in both flocks.

Improving Protein Production on the Level of Regulation of both Expression and Secretion Pathways in Bacillus subtilis

  • Song, Yafeng;Nikoloff, Jonas M.;Zhan, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.963-977
    • /
    • 2015
  • The well-characterized gram-positive bacterium Bacillus subtilis is an outstanding industrial candidate for protein expression owing to its single membrane and high capacity of secretion, simplifying the downstream processing of secretory proteins. During the last few years, there has been continuous progress in the illustration of secretion mechanisms and application of this robust host in various fields of life science, such as enzyme production, feed additives, and food and pharmaceutical industries. Here, we review the developments of Bacillus subtilis as a highly promising expression system illuminating strong chemical- and temperatureinducible and other types of promoters, strategies for ribosome-binding-site utilization, and the novel approach of signal peptide selection. Furthermore, we outline the main steps of the Sec pathway and the relevant elements as well as their interactions. In addition, we introduce the latest discoveries of Tat-related complex structures and functions and the countless applications of this full-folded protein secretion pathway. This review also lists some of the current understandings of ATP-binding cassette transporters. According to the extensive knowledge on the genetic modification strategies and molecular biology of Bacillus subtilis, we propose some suggestions and strategies for improving the yield of intended productions. We expect this to promote striking future developments in the optimization and application of this bacterium.

Application of digital polymerase chain reaction technology for noninvasive prenatal test

  • Lee, Seung Yong;Hwang, Seung Yong
    • Journal of Genetic Medicine
    • /
    • 제12권2호
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, noninvasive prenatal test (NIPT) has been adopted as a primary screening tool for fetal chromosomal aneuploidy. The principle of NIPT lies in isolating the fetal fraction of cell-free DNA in maternal plasma and analyzing it with bioinformatic tools to measure the amount of gene from the target chromosome, such as chromosomes 21, 18, and 13. NIPT will contribute to decreasing the need for unnecessary invasive procedures, including amniocentesis and chorionic villi sampling, for confirming fetal aneuploidy because of its higher positive predictive value than that of the conventional prenatal screening method. However, its greater cost than that of the current antenatal screening protocol may be an obstacle to the adoption of this innovative technique in clinical practice. Digital polymerase chain reaction (dPCR) is a novel approach for detecting and quantifying nucleic acid. dPCR provides real-time diagnostic advantages with higher sensitivity, accuracy, and absolute quantification than conventional quantitative PCR. Since the groundbreaking discovery that fetal cell-free nucleic acid exists in maternal plasma was reported, dPCR has been used for the quantification of fetal DNA and for screening for fetal aneuploidy. It has been suggested that dPCR will decrease the cost by targeting specific sequences in the target chromosome, and dPCR-based noninvasive testing will facilitate progress toward the implementation of a noninvasive approach for screening for trisomy 21, 18, and 13. In this review, we highlight the principle of dPCR and discuss its future implications in clinical practice.

학습장애의 조기 발견을 위한 소아과적 접근 (Pediatric approach to early detection of learning disabilities)

  • 성인경
    • Clinical and Experimental Pediatrics
    • /
    • 제51권9호
    • /
    • pp.911-921
    • /
    • 2008
  • Learning disabilities (LD) are heterogeneous group of disorders with evidences of genetic or familial trait, intrinsic to the individual and presume to be due to central nervous dysfunction. Learning disabilities and attention deficit hyperactivity disorder (ADHD) are the two of the most common disorders in the population of school-age children. Typically academic achievements in children with learning disabilities are significantly lower than expected by their normal or above normal range of IQ. Although academic and cognitive deficits are hallmarks of children with LD, those children are also at risk for a broad range of behavioral and emotional problems. Almost all cases meet criteria for at least one additional diagnosis such as ADHD, developmental coordination disorder, depression, anxiety, obsessive compulsive disorder, tic disorder, among which ADHD is particularly predominant. Because of the response to the therapeutic intervention program is promising and positive when applied early, it is critical to recognize patients as early as possible. Pediatricians often are the first to hear from parents worried about a childs academic progress. It is not the responsibility of pediatrician to make a diagnosis, referring children for a diagnostic evaluation of LD is a reasonable first step. Pediatricians can make early referral of suspicious children by asking some serial short questions about basic and processing skills. With a basic knowledge about the clinical characteristics, diagnostic and therapeutic procedures of LD, pediatricians also can provide primary counseling and education for parents at their outpatient clinical settings.

Overexpression of twin-arginine translocation (TAT) pathway conferred immunity to Xanthomonas oryzae v. oryzae in rice

  • Nino, Marjohn C.;Song, Jae-Young;Nogoy, Franz Marielle;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.166-166
    • /
    • 2017
  • OsTAT encodes a twin-arginine translocator (TAT) pathway signal protein. It contains a TRANS membrane domain and a chloroplast transit peptide. mRNA transcription profiling of OsTAT1 revealed that it is highly overexpressed in the leaves corroborating reports on its role in chloroplast. Moreover, its level of expression is more pronounced during earlier stages (germination, 3-leaf stage, and maximum tillering) of growth in rice. A lower disease progress curve of bacterial blight is evident in transgenic lines compared with the wild type, Dongjin indicating its involvement in immunity to Xoo. Expression pattern following infection of Xoo strain K2 depicts highest levels at 4 and 8 hour post-inoculation which implies crucial induction of resistance during early response. This study initially reports a new overview on the biological functions of plant's TAT pathway. Further molecular and genetic analyses are underway to provide detailed involvement of OsTAT in disease resistance.

  • PDF

구강 질환 진단용 제제 (Diagnostic Agents for Oral and Maxillofacial Diseases)

  • 고홍섭
    • Journal of Oral Medicine and Pain
    • /
    • 제24권2호
    • /
    • pp.181-187
    • /
    • 1999
  • The most important progress in diagnostic sciences is the increased sensitivity and specificity in diagnostic procedures due to the development of newer micromethodologies and increasing availability of immunological and molecular biological reagents. The outcome of researches in this field has already provided DNA probes and antibodies which can be used for diagnosing various kinds of diseases including inherited ones. This development can be also applied to diagnose diseases in oral and maxillofacial regions. Technological advances have yielded highly sensitive test methodologies so that low analyte concentration and small sample volume are no longer limiting factors. Therefore, saliva can be useful test fluid for an array of analytes. Salivary constituents of diagnostic significance include steroid hormones, antibodies, drugs, and tumor markers. Of the proteins present in saliva, viral-specific immunoglobulins are of the greatest diagnostic interest. The development of conjugates and antigens by recombinant DNA technique and peptide synthesis is necessary for clinical application. Several kits developed for the purpose of blood testing should be modified to permit their application to saliva. The final practical outcome of researches in diagnostic sciences will be various diagnostic agents which can be used for detection of bacteria and viruses, screening and diagnosis of diseases, genetic screening for forensic individual identification. For these purposes, collaboration researches and development between institutions and companies are essential.

  • PDF

T-DNA 돌연변이를 이용한 벼 기능 유전체 연구 (Rice functional genomics using T-DNA mutants)

  • 류학승;류나연;정기홍;안진흥;전종성
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.133-143
    • /
    • 2010
  • Rice (Oryza sativa) is a major cereal crop that has been developed as a monocot model species. In past decades rice researchers have established valuable resources for functional genomics in rice, such as complete genome sequencing, high-density genetic maps, a full length cDNA database, genome-wide transcriptome data, and a large number of mutants. Of these, rice mutant lines are very important to definitively determine functions of genes associated with valuable agronomic traits. In this review we summarize the progress of functional genomics approaches in rice using T-DNA mutants.

Conformational Preference of Alanine Dipeptide in the Gas Phase and in Solutions

  • Kim, Daeyou;Kang, Young-Kee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.73-73
    • /
    • 2003
  • We report here the results on N-acetyl-N'-methylamide of alanine (Ac-Ala-NHMe) calculated using the ab initio molecular orbital method with the self-consistent reaction field (SCRF) theory at the HF level with the 6-3l+G(d) basis set to investigate the conformational preference of alanine depending on the backbone torsion angles $\square$ and$\square$ in the gas phase, chloroform, and water. There are seven local minima (LM) in the gas phase and two additional LM are found in chloroform and water. These two additional LM A (an $\square$-helical structure) and F (a polyproline structure) are stabilized only in solutions. In the gas phase, the lowest LM is the conformation C with a C$\sub$7/ intramolecular hydrogen bond and the relative conformational energies range from 0.3 to 6.0 ㎉/mol. In chloroform, the lowest LM is the conformation E (an extended structure) and the relative conformational energies range from 0.7 to 4.9 ㎉/mol. In particular, we identified 14 possible transition states connecting between seven LM in the gas phase. The search for transition states probable in chloroform and water is now in progress.

  • PDF