• 제목/요약/키워드: Genetic Operation

검색결과 390건 처리시간 0.034초

순차적 하드웨어/소프트웨어 파티셔닝 문제들을 해결하기위한 최적화 프레임워크 (An Optimization Framework for Solving Sequential HW/SW Partitioning Problems)

  • 이수정;장형수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(B)
    • /
    • pp.470-473
    • /
    • 2011
  • 본 논문에서는 첫째, 기존 HW/SW partitioning문제의 접근 방식 모델에서 다루지 못하였던 시간 의존적인 개발 기간, 판매 가격, 판매량, time-to-market 등의 요소들을 반영하는 multi-objective 최적화문제 형태의 새로운 "Sequential HW/SW Partitioning Optimization Framework(SPOF)"를 제시하고 둘째, 그 모델로 형식화된 NP-hard 문제를 일반적으로 해결하기위한 해법으로 SPOF의 형태에 맞게끔 변형한 chromosome과 genetic operation을 사용하는 메타휴리스틱 "Fast and Elitist Multi-objective Genetic Algorithm(NSGA-II)"을 제시한다. 실험을 통하여 NSGA-II의 최적 솔루션에의 수렴성을 보인다.

혼합정수계획법 및 유전자 알고리즘을 이용한 다품목 재고 시스템의 주문 주기 상쇄에 관한 연구 (Offsetting Inventory Cycle of Items Sharing Storage using Mixed Integer Programming & Genetic Algorithm)

  • 문일경;차병철;김선권
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.81-84
    • /
    • 2003
  • The ability to determine the optimal frequencies and offsets for independent and unrestricted ordering cycles for multiple items can be very valuable for managing storage capacity constrained facilities in a supply chain. The complexity of this problem has resulted in researchers focusing on more tractable surrogate problems that are special cases of the base problem. Murthy et al. (European Journal of Operation Research 2003) developed insights leading to solution of the original problem and present a heuristic for offsetting independent and unrestricted ordering cycles for items to minimize their joint storage requirements. However, their study cannot find optimal solution due to the Greedy Heuristic solution procedure. In this paper, we present a complete procedure to find the optimal solution for the model with a integer programming optimization approach and genetic algorithm. Numerical examples are included to compare each model with that of Murthy et at. Research of this type may prove useful in solving the more general problem of selecting order policies to minimize combined holding, ordering, and storage costs.

  • PDF

복합 휴리스틱 알고리즘을 이용한 지대공 유도무기 최적배치 모형 : 항공기 방어를 중심으로 (The Optimal Allocation Model for SAM Using Multi-Heuristic Algorithm : Focused on Aircraft Defense)

  • 곽기훈;이재영;정치영
    • 한국경영과학회지
    • /
    • 제34권4호
    • /
    • pp.43-56
    • /
    • 2009
  • In korean peninsular, aircraft defense with SAM (Surface-to-Air Missile) is very important because of short range of combat space in depth. Effective and successful defense operation largely depends on two factors, SAM's location and the number of SAM for each target based on missile's availability in each SAM's location. However, most previous papers have handled only the former. In this paper, we developed Set covering model which can handle both factors simultaneously and Multi-heuristic algorithm for solving allocation problem of the batteries and missile assignment problem in each battery. Genetic algorithm is used to decide optimal location of the batteries. To determine the number of SAM, a heuristic algorithm is applied for solving missile assignment problem. If the proposed model is applied to allocation of SAM, it will improve the effectiveness of air defense operations.

철도 승무원 교번표의 운행 사업 배치 문제에 관한 연구 (A Study on Korean Railroad Crew Rostering Problem)

  • 양태용;김영훈;이동호
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.206-211
    • /
    • 2006
  • This thesis presents railroad crew restoring problem, which is to determine the railroad plan allocation. This problem is constructed that determine the sequence of duties that railroad crews have to perform. We analyze characteristic of this problem and railroad industry. It's hard to consider many constraint conditions. We propose Integer Programming model and easy methodology to be considered all given operation rules. This problem is known to be NP-hard. We develop a genetic algorithm, which is proved to be powerful in solving optimization problems. We proposed the effective mathematical model and algorithm about making crew restoring in real industry.

New design of variable structure control based on lightning search algorithm for nuclear reactor power system considering load-following operation

  • Elsisi, M.;Abdelfattah, H.
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.544-551
    • /
    • 2020
  • Reactor control is a standout amongst the most vital issues in the nuclear power plant. In this paper, the optimal design of variable structure controller (VSC) based on the lightning search algorithm (LSA) is proposed for a nuclear reactor power system. The LSA is a new optimization algorithm. It is used to find the optimal parameters of the VSC instead of the trial and error method or experts of the designer. The proposed algorithm is used for the tuning of the feedback gains and the sliding equation gains of the VSC to prove a good performance. Furthermore, the parameters of the VSC are tuned by the genetic algorithm (GA). Simulation tests are carried out to verify the performance and robustness of the proposed LSA-based VSC compared with GA-based VSC. The results prove the high performance and the superiority of VSC based on LSA compared with VSC based on GA.

유전자 알고리즘을 이용한 저전력 회로 설계 (Designing Circuits for Low Power using Genetic Algorithms)

  • 김현규;오형철
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.478-486
    • /
    • 2000
  • 본 논문에서는 CMOS 디지털 회로상의 플립플롭의 위치를 이동시키는 리타이밍 변환에 유전자 알고리즘을 적용하여 회로의 최적 동작 속도를 유지하면서 전력의 소모를 줄일 수 있는 설계 방법을 제안한다. 제안된 설계 방법은 최적 속도를 구현하는 리타이밍 단계와 유전자 알고리즘이 적용되는 저전력 리타이밍의 두 단계로 이루어진다. 제안된 저전력 리타이밍 설계 도구를 예제 회로의 설계에 적용하고 설계된 회로의 성능을 Synopsys시의 Design Analyzer로 평가한 결과, 임계 경로 지연은 약 30~50% 가량 감소하였으며 동적 전력 소모는 약 1.4~18.4% 가량 감소함을 관찰하였다.

  • PDF

GA-SMC를 이용한 이중 탱크의 정밀한 수위 제어 (Control of Coupled Tank Level using GA-SMC)

  • 박현철;지석준;정종원;최우진;이준탁
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.239-244
    • /
    • 2002
  • Even though, tanks are used at the many industry plants, it is very difficult to control the tank level without any overflow and shortage; moreover, cause of its complication of dynamics and nonlinearity, it's impossible to realize the accurate control using the mathematical model which can be applied to the various operation modes. However, the sliding mode controller(SMC) is known as having the robust variable structures for the nonlinear control systems with the parametric perturbations and with the sudden disturbances, but the auto-tuning of parameters was a problem. Therefore, in this paper, a Genetic Algorithm based Sliding Mode Controller (GA-SMC) for the precise control of the coupled tank level was tried. GA optimized the SMCs switching parameters easily and rapidly. The simulation results are shown that the tank level could be satisfactorily controlled with less overshoot and steady-stale error by the proposed GA-SMC.

  • PDF

신경회로망을 이용한 플라즈마 식각공정의 최적운영과 이상검출에 관한 연구 (A Study on The Optimal Operation and Malfunction Detection of Plasma Etching Utilizing Neural Network)

  • 고택범;차상엽;이석주;최순혁;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.433-440
    • /
    • 1998
  • The purpose of this study is to provide an integrated process control system for plasma etching. The control system is designed to employ neural network for the modeling of plasma etching process and to utilize genetic algorithm to search for the appropriate selection of control input variables, and to provide a control chart to maintain the process output within a desired range in the real plasma etching process. The target equipment is the one operating in DRAM production lines. The result shows that the integrated system developed is practical value in the improved performance of plasma etching process.

  • PDF

복합-휴리스틱 알고리즘을 이용한 지대공 유도무기(SAM) 최적배치 방안 : 탄도미사일 방어를 중심으로 (The Optimal Allocation Model for SAM Using Multi-Heuristic Algorithm : Focused on Theater Ballistic Missile Defense)

  • 이재영;곽기훈
    • 산업공학
    • /
    • 제21권3호
    • /
    • pp.262-273
    • /
    • 2008
  • In Korean peninsular, Air Defense with SAM(Surface-to-Air Missile) is very important, because of threatening by North Korea's theater ballistic missiles installed with nuclear or biochemistry. Effective and successful defense operation largely depends on two factors, SAM's location and the number of SAM for each target based on missile's availability in each SAM's location. However, most previous papers have handled only the former. In this paper, we developed Multi-heuristic algorithm which can handle both factors simultaneously for solving allocation problem of the batteries and missile assignment problem in each battery. To solve allocation problem, genetic algorithm is used to decide location of the batteries. To solve missile assignment problem, a heuristic algorithm is applied to determine the number of SAM for each target. If the proposed model is applied to allocation of SAM, it will improve the effectiveness of missile defense operations.

혼합모델 양면조립라인의 밸런싱과 투입순서를 위한 내공생 진화알고리즘 (An Endosymbiotic Evolutionary Algorithm for Balancing and Sequencing in Mixed-Model Two-Sided Assembly Lines)

  • 조준영;김여근
    • 한국경영과학회지
    • /
    • 제37권3호
    • /
    • pp.39-55
    • /
    • 2012
  • This paper presents an endosymbiotic evolutionary algorithm (EEA) to solve both problems of line balancing and model sequencing in a mixed-model two-sided assembly line (MMtAL) simultaneously. It is important to have a proper balancing and model sequencing for an efficient operation of MMtAL. EEA imitates the natural evolution process of endosymbionts, which is an extension of existing symbiotic evolutionary algorithms. It provides a proper balance between parallel search with the separated individuals representing partial solutions and integrated search with endosymbionts representing entire solutions. The strategy of localized coevolution and the concept of steady-state genetic algorithms are used to improve the search efficiency. The experimental results reveal that EEA is better than two compared symbiotic evolutionary algorithms as well as a traditional genetic algorithm in solution quality.