• Title/Summary/Keyword: Genetic Information

검색결과 3,079건 처리시간 0.032초

Effective Robot Path Planning Method based on Fast Convergence Genetic Algorithm (유전자 알고리즘의 수렴 속도 향상을 통한 효과적인 로봇 길 찾기 알고리즘)

  • Seo, Min-Gwan;Lee, Jae-Sung;Kim, Dae-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • 제20권4호
    • /
    • pp.25-32
    • /
    • 2015
  • The Genetic algorithm is a search algorithm using evaluation, genetic operator, natural selection to populational solution iteratively. The convergence and divergence characteristic of genetic algorithm are affected by selection strategy, generation replacement method, genetic operator when genetic algorithm is designed. This paper proposes fast convergence genetic algorithm for time-limited robot path planning. In urgent situation, genetic algorithm for robot path planning does not have enough time for computation, resulting in quality degradation of found path. Proposed genetic algorithm uses fast converging selection strategy and generation replacement method. Proposed genetic algorithm also uses not only traditional crossover and mutation operator but additional genetic operator for shortening the distance of found path. In this way, proposed genetic algorithm find reasonable path in time-limited situation.

Design and Implementation of Learning Contents Using Interactive Genetic Algorithms with Modified Mutation (변형된 돌연변이를 가진 대화형 유전자 알고리즘을 이용한 학습 콘텐츠의 설계 및 구현)

  • Kim Jung-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • 제10권6호
    • /
    • pp.85-92
    • /
    • 2005
  • In this Paper, we develope an effective web-based learning contents using interactive genetic algorithms with modified mutation operation. In the interactive genetic algorithm, reciprocal exchange mutation is used. But. we modify the mutation operator to improve the learning effects. The new web-based learning contents using interactive genetic algorithm provide the dynamic learning contents providing and real-time test system. Especially, learners can execute the interactive genetic algorithm according to the learners' characters and interests to select the efficient learning environments and contents sequences.

  • PDF

Optimal topology in Wibro MMR Network Using a Genetic Algorithm (유전 알고리즘을 이용한 Wibro MMR 네트워크의 최적 배치 탐색)

  • Oh, Dongik;Kim, Woo-Je
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제34권2호
    • /
    • pp.235-245
    • /
    • 2008
  • The purpose of this paper is to develop a genetic algorithm to determine the optimal locations of base stations and relay stations in Wibro MMR Network. Various issues related to the genetic algorithm such as solution representation, selection method, crossover operator, mutation operator, and a heuristic method for improving the quality of solutions are presented. The computational results are presented for determining optimal parameters for the genetic algorithm, and show the convergence of the genetic algorithm.

Optimization of Fuzzy Car Controller Using Genetic Algorithm

  • Kim, Bong-Gi;Song, Jin-Kook;Shin, Chang-Doon
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.222-227
    • /
    • 2008
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.

Analysis of genetic diversity and distances in Asian cattle breeds using microsatellite markers

  • Shi, Zheng;Lee, Ji-Hong;Lee, Yoon-Seok;Oh, Dong-Yeub;Yeo, Jung-Sou
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권4호
    • /
    • pp.795-802
    • /
    • 2010
  • This study defined the genetic diversity of five breeds of cattle in Asia by analyzing 6 microsatellite markers in 270 animals. Based on expected mean heterozygosity, the lowest genetic diversity was exhibited in Japanese black cattle (HE=0.5849), and the highest in Chinese yellow cattle (HE=0.8073). Average proportion of genetic variation due to interpopulation subdivision among these five cattle breeds varied between 11.7 and 12.5%. The genetic distances were roughly divided into three groups: Japanese black cattle, Holstein, and the three remaining breeds. This clustering agrees with the origin and geographical distributions of these five cattle breeds.

A Distributed Stock Cutting using Mean Field Annealing and Genetic Algorithm

  • Hong, Chul-Eui
    • Journal of information and communication convergence engineering
    • /
    • 제8권1호
    • /
    • pp.13-18
    • /
    • 2010
  • The composite stock cutting problem is defined as allocating rectangular and irregular patterns onto a large composite stock sheet of finite dimensions in such a way that the resulting scrap will be minimized. In this paper, we introduce a novel approach to hybrid optimization algorithm called MGA in MPI (Message Passing Interface) environments. The proposed MGA combines the benefit of rapid convergence property of Mean Field Annealing and the effective genetic operations. This paper also proposes the efficient data structures for pattern related information.

A Study of Data Mining Optimization Model for the Credit Evaluation

  • Kim, Kap-Sik;Lee, Chang-Soon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.825-836
    • /
    • 2003
  • Based on customer information and financing processes in capital market, we derived individual models by applying multi-layered perceptrons, MDA, and decision tree. Further, the results from the existing single models were compared with the results from the integrated model that was developed using genetic algorithm. This study contributes not only to verifying the existing individual models and but also to overcoming the limitations of the existing approaches. We have depended upon the approaches that compare individual models and search for the best-fit model. However, this study presents a methodology to build an integrated data mining model using genetic algorithm.

  • PDF

Optimizing SVM Ensembles Using Genetic Algorithms in Bankruptcy Prediction

  • Kim, Myoung-Jong;Kim, Hong-Bae;Kang, Dae-Ki
    • Journal of information and communication convergence engineering
    • /
    • 제8권4호
    • /
    • pp.370-376
    • /
    • 2010
  • Ensemble learning is a method for improving the performance of classification and prediction algorithms. However, its performance can be degraded due to multicollinearity problem where multiple classifiers of an ensemble are highly correlated with. This paper proposes genetic algorithm-based optimization techniques of SVM ensemble to solve multicollinearity problem. Empirical results with bankruptcy prediction on Korea firms indicate that the proposed optimization techniques can improve the performance of SVM ensemble.

Minimization of Hidden Area Using Genetic Algorithm in 3D Terrain Viewing

  • Won, Bo-Hwan;Koo, Ja-Young
    • Korean Journal of Remote Sensing
    • /
    • 제18권5호
    • /
    • pp.291-297
    • /
    • 2002
  • Optimal allocation of viewers on a terrain in such a wav that the hidden area would be minimized has many practical applications. However, it is impossible in practical sense to evaluate all the possible allocations. In this paper, we propose an optimal allocation of viewers based on genetic algorithm that enables probabilistic search of huge solution space. An experiment for one and three viewers was performed. The algorithm converges to good solutions. Especially, in one viewer case, the algorithm found the best solution.

Competitive Generation for Genetic Algorithms

  • Jung, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제17권1호
    • /
    • pp.86-93
    • /
    • 2007
  • A new operation termed competitive generation in the processes of genetic algorithms is proposed for accelerating the optimization speed of genetic algorithms. The competitive generation devised by considering the competition of sperms for fertilization provides a good opportunity for the genetic algorithms to approach global optimum without falling into local optimum. Experimental results with typical problems showed that the genetic algorithms with competitive generation are superior to those without the competitive generation.