• Title/Summary/Keyword: Genetic Factors

Search Result 1,675, Processing Time 0.038 seconds

Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis

  • Kim, Heejin;Choi, Kyuha
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.273-283
    • /
    • 2022
  • During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.

Implementation of Optimal Temperature Controller for Thermoelectric Device-based Heating System Using Genetic Algorithm (유전알고리즘을 이용한 열전소지 기반 히팅 시스템의 최적 온도 제어기 구현)

  • Jung-Shik Kong
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.41-47
    • /
    • 2023
  • This paper presents the development of a controller that can control the temperature of an heating system based on a thermoelectric module. Temperature controller using Peltier has various external factors such as external temperature, characteristics of an aluminum plate, installation location of temperature sensors, and combination method between the aluminum plate and heating element. Therefore, it is difficult to apply the simulation and simulation results of heating system using Peltier at control algorithm. In general, almost temperature controller is using PID algorithm that finds control gain value heuristically. In this paper, it is proposed mathematical model that explain correlate between the temperature of the heating system and input voltage. And then, optimal parameter of estimated thermal model of the aluminum plate are searched by using genetic algorithm. In addition, based on this estimated model, the optimal PID control gain are inferred using a genetic algorithm. All of the sequence are simulated and verified with proposed real system.

Genetic Changes of Cornus controversa with Ozone Exposure (오존 노출에 의한 층층나무의 유전특성 변화)

  • 장석성;이석우;이재천;한심희;김홍은
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.226-232
    • /
    • 2003
  • To examine the effects of ozone (O$_3$), one of the major air pollutants in the city area, on genetic changes in Cornus controversa Hemsl., we compared genetic structures between sensitive (S) and tolerant (T) tree groups of C. controversa fumigated with ozone using isozyme markers. The genetic structures were measured in terms of allele and genotype frequencies determined at ave polymorphic enzyme loci. Marked genetic differences between the two groups were detected at three loci (Lap-2, Mdh-1 and Skdh-1). Genetic parameters, genetic multiplicity, genetic diversity and heterozygosity showed that the tolerant group retained greater genetic variation than did the sensitive group. Results of the study were congruent with the general expectation that the more heterozygous individuals and/or populations exhibit higher resistance to various stress factors.

Molecular Genetic Diagnosis of Genetic Endocrine Diseases (유전성 내분비 질환의 분자유전학적 진단)

  • Choi, Jin-Ho;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Many endocrine disorders have a genetic component. The genetic component is the major etiologic factor in monogenic disorders, while multiple genes in conjunction with environmental and lifestyle factors contribute to the pathogenesis in complex disorders. The development of the molecular basis of inherited endocrine diseases has undergone a dramatic evolution during the last two decades. The application of molecular technology allowed us to increase our understanding of endocrine diseases, and to impact on the practice of pediatric endocrinology related to diagnosis and genetic counseling. Identification of the mutation in the particular disease by genetic testing leads to precise diagnosis in the equivocal cases and prenatal diagnosis. However, clinicians should be cautious about determining therapeutic decisions solely on the basis of molecular studies, especially in the area of prenatal diagnosis and termination of pregnancy. This review describes an introduction to molecular basis of various inherited endocrine diseases and diagnosis by genetic testing.

Epigenetic Changes in Asthma: Role of DNA CpG Methylation

  • Bae, Da-Jeong;Jun, Ji Ae;Chang, Hun Soo;Park, Jong Sook;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • For the past three decades, more than a thousand of genetic studies have been performed to find out the genetic variants responsible for the risk of asthma. Until now, all of the discovered single nucleotide polymorphisms have explained genetic effects less than initially expected. Thus, clarification of environmental factors has been brought up to overcome the 'missing' heritability. The most exciting solution is epigenesis because it intervenes at the junction between the genome and the environment. Epigenesis is an alteration of genetic expression without changes of DNA sequence caused by environmental factors such as nutrients, allergens, cigarette smoke, air pollutants, use of drugs and infectious agents during pre- and post-natal periods and even in adulthood. Three major forms of epigenesis are composed of DNA methylation, histone modifications, and specific microRNA. Recently, several studies have been published on epigenesis in asthma and allergy as a powerful tool for research of genetic heritability in asthma albeit epigenetic changes are at the starting point to obtain the data on specific phenotypes of asthma. In this presentation, we mainly review the potential role of DNA CpG methylation in the risk of asthma and its sub-phenotypes including nonsteroidal anti-inflammatory exacerbated respiratory diseases.

A genome-wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.)

  • Md. Abdur Rauf Sarkar;Salim Sarkar;Md Shohel Ul Islam;Fatema Tuz Zohra;Shaikh Mizanur Rahman
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.36.1-36.19
    • /
    • 2023
  • The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.

Endometriosis, Leiomyoma and Adenomyosis: the Risk of Gynecologic Malignancy

  • Verit, Fatma Ferda;Yucel, Oguz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5589-5597
    • /
    • 2013
  • The aim of this review article was to evaluate the relationship and the possible etiological mechanisms between endometriosis, leiomyoma (LM) and adenomyosis and gynecological cancers, such as ovarian and endometrial cancer and leiomyosarcoma (LMS). MEDLINE was searched for all articles written in the English literature from July 1966 to May 2013. Reports were collected systematically and all the references were also reviewed. Malignant transformation of gynecologic benign diseases such as endometriosis, adenomyosis and LM to ovarian and endometrial cancer remains unclear. Hormonal factors, inflammation, familial predisposition, genetic alterations, growth factors, diet, altered immune system, environmental factors and oxidative stress may be causative factors in carcinogenesis. Early menarche, low parity, late menopause and infertility have also been implicated in the pathogenesis of these cancers. Ovarian cancers and endometriosis have been shown to have common genetic alterations such as loss of heterozygosity (LOH), PTEN, p53, ARID1A mutations. MicroRNAs have also been implicated in malignant transformation. Inflammation releases proinflammatory cytokines, and activates tumor associated macrophages (TAMS) and nuclear factor kappa b (NF-KB) signaling pathways that promote genetic mutations and carcinogenesis. MED12 mutations in LM and smooth muscle tumors of undetermined malignant potential (STUMP) may contribute to malignant transformation to LMS. A hyperestrogenic state may be shared in common with pathogenesis of adenomyosis, LM and endometrial cancer. However, the effect of these benign gynecologic diseases on endometrial cancer should be studied in detail. This review study indicates that endometriosis, LM, adenomyosis may be associated with increased risk of gynecological cancers such as endometrial and ovarian cancers. The patients who have these gynecological benign diseases should be counseled about the future risks of developing cancer. Further studies are needed to investigate the relationship between STUMPs, LMS and LM and characteristics and outcome endometrial carcinoma in adenomyotic patients.

Evaluation of Genetic Variations in miRNA-Binding Sites of BRCA1 and BRCA2 Genes as Risk Factors for the Development of Early-Onset and/or Familial Breast Cancer

  • Erturk, Elif;Cecener, Gulsah;Polatkan, Volkan;Gokgoz, Sehsuvar;Egeli, Unal;Tunca, Berrin;Tezcan, Gulcin;Demirdogen, Elif;Ak, Secil;Tasdelen, Ismet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8319-8324
    • /
    • 2014
  • Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intronexon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs $c.^*1287C$ >T (rs12516) (BRCA1) and $c.^*105A$ >C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism $c.^*1287C$ >T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP $c.^*1287C$ >T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.

A Study on Six Sigma Robust Design of Gripper Part for LCD Transfer System (식스 시그마 기반 LCD이송장치의 Gripper부 강건설계에 관한 연구)

  • Chung, W.J.;Jung, D.W.;Kim, S.B.;Yoon, Y.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 2006
  • This paper presents the robust design of gripper part for a high-speed LCD(Liquid Crystal Display) transfer system. In this paper, the $1^{st}$ DOE(Design of Experiment) is conducted to find out main-effect factors for the design of gripper part. Thirty-six analysis are performed using $ANSYS^{(R)}$ and their results are statistically analyzed using $MINITAB^{(R)}$, which shows that the factors, i.e., First-width, Second-width, Rec-width, and thickness of gripper part, are more important than other factors. The main effect plots shows that the maximum deflection and mass of gripper part are minimized by increasing First-width, Second-width, Rec-width and thickness. The $2^{nd}$ DOE is conducted to obtain RSM(Response Surface Method) equation. The CCD(Central Composite Design) technique with four factors is used. Optimum design is conducted using the RSM equation. Genetic algorithm is used for optimal design. Six sigma robust design is conducted to find out a guideline for control range of design parameter. To obtain six sigma level quality, the standard deviations of design parameters are shown to be controlled within 5% of average design value.

The Health Examinees (HEXA) Study: Rationale, Study Design and Baseline Characteristics

  • Health Examinees (HEXA) Study Group
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1591-1597
    • /
    • 2015
  • Background: Korea has experienced rapid economic development in a very short period of time. A mixture of traditional and modern risk factors coexists and the rapid change in non-genetic factors interacts with genetic constituents. With consideration of these unique aspects of Korean society, a large-scale genomic cohort study-the Health Examinees (HEXA) Study-has been conducted to investigate epidemiologic characteristics, genomic features, and gene-environment interactions of major chronic diseases including cancer in the Korean population. Materials and Methods: Following a standardized study protocol, the subjects were prospectively recruited from 38 health examination centers and training hospitals throughout the country. An interview-based questionnaire survey was conducted to collect information on socio-demographic characteristics, medical history, medication usage, family history, lifestyle factors, diet, physical activity, and reproductive factors for women. Various biological specimens (i.e., plasma, serum, buffy coat, blood cells, genomic DNA, and urine) were collected for biorepository according to the standardized protocol. Skilled medical staff also performed physical examinations. Results: Between 2004 and 2013, a total of 167,169 subjects aged 40-69 years were recruited for the HEXA study. Participants are being followed up utilizing active and passive methods. The first wave of active follow-up began in 2012 and it will be continued until 2015. The principal purpose of passive follow-up is based on data linkages with the National Death Certificate, the National Cancer Registry, and the National Health Insurance Claim data. Conclusions: The HEXA study will render an opportunity to investigate biomarkers of early health index and the chronological changes associated with chronic diseases.