• Title/Summary/Keyword: Genetic Evaluation

Search Result 891, Processing Time 0.021 seconds

Update of Diagnostic Evaluation of Craniosynostosis with a Focus on Pediatric Systematic Evaluation and Genetic Studies

  • Hwang, Su-Kyeong;Park, Ki-Su;Park, Seong-Hyun;Hwang, Sung Kyoo
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.214-218
    • /
    • 2016
  • Most craniosynostoses are sporadic, but may have an underlying genetic basis. Secondary and syndromic craniosynostosis accompanies various systemic diseases or associated anomalies. Early detection of an associated disease may facilitate the interdisciplinary management of patients and improve outcomes. For that reason, systematic evaluation of craniosynostosis is mandatory. The authors reviewed systematic evaluation of craniosynostosis with an emphasis on genetic analysis.

A Study of Balancing at Two-sided and Mixed Model Work Line Using Genetic Algorithm (효율적인 유전알고리듬을 이용하여 양면.혼합모델 작업라인 균형에 대한 연구)

  • 이내형;조남호
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.05a
    • /
    • pp.91-97
    • /
    • 2002
  • In this thesis presents line balancing problems of two-sided and mixed model assembly line widely used in practical fields using genetic algorithm for reducing throughput time, cost of tools and fixtures and improving flexibility of assembly lines. Two-sided and mixed model assembly line is a special type of production line where variety of product similar in product characteristics are assembled in both sides. This thesis proposes the genetic algorithm adequate to each step in tow-sided and mixed model assembly line with suitable presentation, individual, evaluation function, selection and genetic parameter. To confirm proposed genetic algorithm, we apply to increase the number of tasks in case study. And for evaluation the performance of proposed genetic algorithm, we compare to existing algorithm of one-sided and mixed model assembly line. The results show that the algorithm is outstanding in the problems with a larger number of stations or larger number of tasks.

  • PDF

A Study on the Two-sided and Mixed Model Assembly Line Balancing Using Genetic Algorithm (유전알고리듬을 이용한 양면.혼합모델 조립라인 밸런싱)

  • 이내형;조남호
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.83-101
    • /
    • 2002
  • In this thesis presents line balancing problems of two-sided and mixed model assembly line widely used in practical fields using genetic algorithm for reducing throughput time, cost of tools and fixtures and improving flexibility of assembly lines. Two-sided and mixed model assembly line is a special type of production line where variety of product similar in product characteristics are assembled in both sides. This thesis proposes the genetic algorithm adequate to each step in tow-sided and mixed model assembly line with suitable presentation, individual, evaluation function, selection and genetic parameter. To confirm proposed genetic algorithm, we apply to increase the number of tasks in case study. And for evaluation the performance of proposed genetic algorithm, we compare to existing algorithm of one-sided and mixed model assembly line. The results show that the algorithm is outstanding in the problems with a larger number of stations or larger number of tasks.

Six-years' Experience of Pseudomosaicism and Maternal Cell Contamination in Cultured Amniocytes

  • Moon, Shin-Yong;Jee, Byung-Chul;Kim, Seok-Hyun;Oh, Sun-Kyung;Park, Joong-Shin;Choi, Young-Min
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.25-27
    • /
    • 1999
  • Purpose: To present our experiences in pseudomosaicism or maternal cell contamination in genetic mid-trimester amniocentesis confirmed through percutaneous umbilical blood sampling. Methods: From 1992 to 1997, repeated cytogenetic evaluation with fetal cord blood was carried out in 14 cases showing mosaic patterns. Results: We confirmed pseudomosaicism in 12 cases (85.7%) by repeated cytogenetic evaluation, and also maternal cell contamination in 2 cases. Conclusion: Repeated cytogenetic evaluation via percutaneous umbilical blood sampling was a rapid and useful method for the confirmation of mosaicism resulted from genetic mid-trimester amniocentesis.

  • PDF

Genetic Parameter Estimation of Carcass Traits of Duroc Predicted Using Ultrasound Scanning Modes

  • Salces, Agapita J.;Seo, Kang Seok;Cho, Kyu Ho;Kim, SiDong;Lee, Young Chang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1379-1383
    • /
    • 2006
  • A total of 6,804 records for Duroc breed were collected from three farms registered at the Korean Animal Improvement Association (KAIA) from 1998 to 2004 of which both records from two ultrasound modes (A and B) were analyzed to estimate the variance components of carcass traits. Three carcass traits backfat thickness (bf), loin eye muscle area (lma) and lean meat percentage (lmp) were measured. These traits were analyzed separately as bf1, lma1 and lmp1 for ultrasound mode A and bf2, lma2 and lmp2 for ultrasound mode B with multiple trait animal model by using MTDFREML (Boldman et al., 1993). All the traits revealed medium heritability values. Estimated heritabilities for bf1, bf2, lma1, lma2, lmp1 and lmp2 were 0.45, 0.39, 0.32, 0.25, 0.28 and 0.39, respectively. Estimated genetic correlations for traits bf1 and bf2, lma1 and lma2, lmp1 and lmp2 were positive but low. Specifically, genetic correlations between bf1 and bf2 was 0.30 while the estimates for lean traits between lma1 and lma2 and between lmp1 and lmp2 were 0.15 and 0.18, respectively. Conversely, high negative genetic correlations existed between bf1 and the lean traits lma2, lmp2. Likewise, the estimated genetic correlations between lma1 and lma2 and lmp1 and lmp2 were low.

Development of International Genetic Evaluation Models for Dairy Cattle (홀스타인의 국제유전평가를 위한 모형개발에 관한 연구)

  • Cho, Kwang Hyun;Park, Byoungho;Choi, Jaekwan;Choi, Taejeong;Choy, Yunho;Lee, Seungsu;Cho, Chungil
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • This study was aimed to solve the problems of current national genetic evaluation systems in Korea and its development to pass the verification processes as required by International Bull Evaluation Service (Interbull). This will enable Korea to participate in international genetic evaluation program. A total of 1,416,589 test-day milk records with calving dates used in this study were collected by National Agricultural Cooperative Federation from 2001 to 2009. Parity was limited up to fifth calving and milk production records were adjusted to cumulative 305 day lactation. The pedigree consisted of 2,279,741 animals where 2,467 bulls had 535,409 parents. A newly developed multiple trait model was used in calculation of breeding values for milk yield, milk fat, and protein yield. Data were edited with SAS (version 9.2) and R programs, and genetic parameters were estimated using VCE 6.0. Results showed a continuous increase in genetic potentials, in general, and no remarkable differences were found between performances by parity. Except fat yield, potentials in milk yield and protein yield were well calculated. We found an increased number of daughters per each top ranked 1,000 bulls in recent years of calf births compared to the cases of previous evaluations. Of the bulls ranked top 100 by our new models (multiple-trait models) we found that increased numbers of bulls were included. Of twenty eight bulls born in 2006, twenty bulls born in 2007 and eight bulls born in 2008 that were listed by new models, only 23, 12, and 2 bulls born in respective years were represented on top 100 by old single-trait models. Re-ranking of the daughters or sires by multiple-trait models suggest that this new multiple trait approach should be used for dairy cattle genetic evaluation and seed-stock selection in the future to increase the accuracy of multiple trait selection. Breeding values for these traits should also be calculated by new method for international genetic evaluation.

Real-time processing system for embedded hardware genetic algorithm (임베디드 하드웨어 유전자 알고리즘을 위한 실시간 처리 시스템)

  • Park Se-hyun;Seo Ki-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1553-1557
    • /
    • 2004
  • A real-time processing system for embedded hardware genetic algorithm is suggested. In order to operate basic module of genetic algorithm in parallel, such as selection, crossover, mutation and evaluation, dual processors based architecture is implemented. The system consists of two Xscale processors and two FPGA with evolvable hardware, which enables to process genetic algorithm efficiently by distributing the computational load of hardware genetic algorithm to each processors equally. The hardware genetic algorithm runs on Linux OS and the resulted chromosome is executed on evolvable hardware in FPGA. Furthermore, the suggested architecture can be extended easily for a couple of connected processors in serial, making it accelerate to compute a real-time hardware genetic algorithm. To investigate the effect of proposed approach, performance comparisons is experimented for an typical computation of genetic algorithm.

A Baseball Batter Evaluation Model using Genetic Algorithm

  • Lee, Su-Hyun;Jung, Yerin;Moon, Hyung-Woo;Woo, Yong-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a new batter evaluation model that reflects the skill of the opponent pitcher in Korean professional baseball. The model consists of evaluation factors such as Run Value, Contribution Score and Ball Consumption considering the pitcher grade. These evaluation factors are calculated as different data. In order to include the evaluation factors having different characteristics into one model, each evaluation factor is weighted and added. The genetic algorithms were used to calculate the weights, and the data were based on the 2016 records of Korea Professional Baseball and the salary data of the players of 2017. As a result of calculation of the weight, the weight of the Run Value was high and the weight of the Contribution Score was very low. This means that when calculating the annual salary, it reflects much of the expected score according to the batting result of the batter. On the other hand, the contribution score indicating the degree to which the batting result contributed to the victory of the team according to the state of the economy is not reflected in the salary or point system.

Multi-breed Genetic Evaluation for Swine in Korea (국내 종돈의 다품종 유전능력 평가)

  • Do, C.H.;Park, H.Y.;Hyun, J.Y.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.377-382
    • /
    • 2002
  • This study was carried out for the simultaneous genetic evaluation of swine breeds from the seedstock farms in Korea. The performance tested production records of 96,842 heads and the litter records of 90,396 litters from 1995 to 2001 were analyzed to estimate the breeding values and the breed effects of days to 90kg, daily gain, back fat thickness, loin muscle area, lean meat percent, total litter size and number born alive from Landrace, Yorkshire and Duroc. Estimated breed effects of traits had shown the characteristics of the breeds. Landrace was superior in back fat thickness and lean meat percent to other breeds. Yorkshire had shown good performance in lean meat percent, loin muscle area, total litter size and number born alive. Duroc was superior to the other breeds in days to 90kg and daily gain. Conclusively, the multi-breed genetic evaluation would result in higher connectedness and provide convenience for the routine genetic evaluation process of swine performance and reproduction test.

Genetic evaluation for economic traits of commercial Hanwoo population using single-step GBLUP

  • Gwang Hyeon Lee;Khaliunaa Tseveen;Yoon Seok Lee;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.268-274
    • /
    • 2023
  • Background: Recently, the single-step genomic best linear unbiased prediction (ssGBLUP) method, which incorporates not only genomic information but also phenotypic information of pedigree, is under study. In this study, we performed a ssGBLUP analysis on a commercial Hanwoo population using phenotypic, genotypic, and pedigree data. Methods: The test population comprised Hanwoo 1,740 heads raised in four regions of Korea, while the reference population used Hanwoo 18,499 heads raised across the country and two-generation pedigree data. Analysis was performed using genotype data generated by the Hanwoo 50 K SNP beadchip. Results: The mean Genome estimated breeding values (GEBVs) estimated using the ssGBLUP methods for carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS) were 7.348, 1.515, -0.355, and 0.040, respectively, while the accuracy of each trait was 0.749, 0.733, 0.769, and 0.768, respectively. When the correlation analysis between the GEBVs as a result of this study and the actual slaughter performance was confirmed, CWT, EMA, BFT, and MS were reported to be 0.519, 0.435, 0.444, and 0.543, respectively. Conclusions: Our results suggest that the ssGBLUP method enables a more accurate evaluation because it conducts a genetic evaluation of an individual using not only genotype information but also phenotypic information of the pedigree. Individual evaluation using the ssGBLUP method is considered effective for enhancing the genetic ability of farms and enabling accurate and rapid improvements. It is considered that if more pedigree information of reference population is collected for analysis, genetic ability can be evaluated more accurately.