• 제목/요약/키워드: Genetic Background

검색결과 751건 처리시간 0.038초

SSR 마커를 이용한 산양삼의 유전적 다양성 분석 (Genetic Diversity Analysis of Wood-cultivated Ginseng using Simple Sequence Repeat Markers)

  • 길진수;엄유리;변재경;정종욱;이이;정찬문
    • 한국약용작물학회지
    • /
    • 제25권6호
    • /
    • pp.389-396
    • /
    • 2017
  • Background: Panax ginseng C. A. Meyer is wood-cultivated ginseng (WCG) in Korea which depends on an artificial forest growth method. To produce this type of ginseng, various P. ginseng cultivars can be used. To obtain a WCG similar to wild ginseng (WG), this method is usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. Recently, the WCG industry is suffering a problem in that Panax notoginseng (Burk.) F. H. Chen or Panax quinquefolium L. are being sold as WCG Korean market; These morphological similarities have created confusion among customers. Methods and Results: WCG samples were collected from five areas in Korea. After polymerase chain reaction (PCR) amplification using the primer pair labeled with fluorescence dye (FAM, NED, PET, or VIC), fragment analysis were performed. PCR products were separated by capillary electrophoresis with an ABI 3730 DNA analyzer. From the results, WCG cultivated in Korea showed very diverse genetic background. Conclusions: In this study, we tried to develop a method to discriminate between WCG, P. notoginseng or P. quinquefolium using simple sequence repeat (SSR) markers. Furthermore, we analyzed the genetic diversity of WCG collected from five cultivation areas in Korea.

Dexamethasone-induced muscle atrophy and bone loss in six genetically diverse collaborative cross founder strains demonstrates phenotypic variability by Rg3 treatment

  • Bao Ngoc Nguyen;Soyeon Hong;Sowoon Choi;Choong-Gu Lee;GyHye Yoo;Myungsuk Kim
    • Journal of Ginseng Research
    • /
    • 제48권3호
    • /
    • pp.310-322
    • /
    • 2024
  • Background: Osteosarcopenia is a common condition characterized by the loss of both bone and muscle mass, which can lead to an increased risk of fractures and disability in older adults. The study aimed to elucidate the response of various mouse strains to treatment with Rg3, one of the leading ginsenosides, on musculoskeletal traits and immune function, and their correlation. Methods: Six Collaborative Cross (CC) founder strains induced muscle atrophy and bone loss with dexamethasone (15 mg/kg) treatment for 1 month, and half of the mice for each strain were orally administered Rg3 (20 mg/kg). Different responses were observed depending on genetic background and Rg3 treatment. Results: Rg3 significantly increased grip strength, running performance, and expression of muscle and bone health-related genes in a two-way analysis of variance considering the genetic backgrounds and Rg3 treatment. Significant improvements in grip strength, running performance, bone area, and muscle mass, and the increased gene expression were observed in specific strains of PWK/PhJ. For traits related to muscle, bone, and immune functions, significant correlations between traits were confirmed following Rg3 administration compared with control mice. The phenotyping analysis was compiled into a public web resource called Rg3-OsteoSarco. Conclusion: This highlights the complex interplay between genetic determinants, pathogenesis of muscle atrophy and bone loss, and phytochemical bioactivity and the need to move away from single inbred mouse models to improve their translatability to genetically diverse humans. Rg3-OsteoSarco highlights the use of CC founder strains as a valuable tool in the field of personalized nutrition.

DNA Repair Gene Polymorphisms Do Not Predict Response to Radiotherapy-Based Multimodality Treatment of Patients with Rectal Cancer: a Meta-analysis

  • Guo, Cheng-Xian;Yang, Guo-Ping;Pei, Qi;Yin, Ji-Ye;Tan, Hong-Yi;Yuan, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.713-718
    • /
    • 2015
  • Background: A number of association studies have been carried out to investigate the relationship between genetic polymorphisms in DNA repair genes and response to radiotherapy-based multimodality treatment of patients with rectal cancer. However, their conclusions were inconsistent. The objective of the present study was to assess the role of DNA repair gene genetic polymorphisms in predicting genetic biomarkers of the response in rectal cancer patients treated with neoadjuvant chemoradiation. Materials and Methods: Studies were retrieved by searching the PubMed database, Cochrane Library, Embase, and ISI Web of Knowledge. We conducted a meta-analysis to evaluate the association between genetic polymorphisms and the response in rectal cancer treated with neoadjuvant chemoradiation by checking odds ratios (ORs) and 95% confidence intervals (CIs). Results: Data were extracted from 5 clinical studies for this meta-analysis. The results showed that XRCC1 RS25487, XRCC1 RS179978, XRCC3 RS861539, ERCC1 RS11615 and ERCC2 RS13181 were not associated with the response in the radiotherapy-based multimodality treatment of patients with rectal cancer (p>0.05). Conclusions: This study shows that DNA repair gene common genetic polymorphisms are not significantly correlated with the radiotherapy-based multimodality treatment in rectal cancer patients.

Expression of HERC4 in Lung Cancer and its Correlation with Clinicopathological Parameters

  • Zeng, Wen-Li;Chen, Yao-Wu;Zhou, Hui;Zhou, Jue-Yu;Wei, Min;Shi, Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.513-517
    • /
    • 2015
  • Background: Growing evidence suggests that the members of the ubiquitin-proteasome system (UPS) are important for tumorigenesis. HERC4, one component, is a recently identified ubiqutin ligase. However, the expression level and function role of HERC4 in lung cancer remain unknown. Our objective was to investigate any correlation between HERC4 and development of lung cancer and its clinical significance. Materials and Methods: To determine HERC4 expression in lung cancer, an immunohistochemistry analysis of a tissue microarray containing samples of 10 lung normal tissues, 15 pulmonary neuroendocrine carcinomas, 45 squamous epithelial cancers and 50 adenocarcinomas was conducted. Receiver operating characteristic (ROC) curve analysis was applied to obtain a cut-off point of 52.5%, above which the expression of HERC4 was regarded as "positive". Results: On the basis of ROC curve analysis, positive expression of HERC4 was detected in 0/10 (0.0%) of lung normal tissues, in 4/15 (26.7%) of pulmonary neuroendocrine carcinomas, in 13/45 (28.9%) of squamous epithelial cancers and in 19/50 (38.0%) of adenocarcinomas. It showed that lung tumors expressed more HERC4 protein than adjacent normal tissues (${\chi}^2$=4.675, p=0.031). Furthermore, HERC4 positive expression had positive correlation with pT status (${\chi}^2$=44.894, p=0.000), pN status (${\chi}^2$=43.628, p=0.000), histological grade (${\chi}^2$=7.083, p=0.029) and clinical stage (${\chi}^2$=72.484, p=0.000), but not age (${\chi}^2$=0.910, p=0.340). Conclusions: Our analysis suggested that HERC4 is likely to be a diagnostic biomarker for lung cancer.

Meta-Analysis of the Association between the rs8034191 Polymorphism in AGPHD1 and Lung Cancer Risk

  • Zhang, Le;Jin, Tian-Bo;Gao, Ya;Wang, Hui-Juan;Yang, Hua;Feng, Tian;Chen, Chen;Kang, Long-Li;Chen, Chao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2713-2717
    • /
    • 2015
  • Background: Possible associations between the single nucleotide polymorphism (SNP) rs8034191 in the aminoglycosidephosphotransferase domain containing 1 (AGPHD1) gene and lung cancer risk have been studied by many researchers but the results have been contradictory. Materials and Methods: A computerized search for publications on rs8034191 and lung cancer risk was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the association between rs8034191 and lung cancer risk with 13 selected case-control studies. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis, and assessment of bias were also performed. Results: A significant association between rs8034191 and lung cancer susceptibility was found using the dominant genetic model (OR=1.344, 95% CI: 1.285-1.406), the additive genetic model (OR=1.613, 95% CI: 1.503-1.730), and the recessive genetic model (OR=1.408, 95% CI: 1.319-1.503). Moreover, an increased lung cancer risk was found with all genetic models after stratification of ethnicity. Conclusions: The association between rs8034191 and lung cancer risk was significant using multiple genetic models, suggesting that rs8034191 is a risk factor for lung cancer. Further functional studies of this polymorphism and lung cancer risk are warranted.

Placental Superoxide Dismutase, Genetic Polymorphism, and Neonatal Birth Weight

  • Hong, Yun-Chul;Lee, Kwan-Hee;Im, Moon-Hwan;Kim, Young-Ju;Ha, Eun-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • 제37권4호
    • /
    • pp.306-311
    • /
    • 2004
  • Background : The roles of antioxidants in the placenta and genetic susceptibility to oxidant chemicals in relation to neonatal birth weight have not been elucidated. We determined whether the level of placental manganese superoxide dismutase (MnSOD) and its genetic polymorphism plays any role in oxidative stress and neonatal birth weight. Methods : We measured placental MnSOD and determined MnSOD genetic polymorphism among 108 pregnant women who were hospitalized for delivery and their singleton live births in Korea. Main outcome measurements are maternal urinary malondialdehyde (MDA) and birth weight. Results : Maternal urinary concentrations of MDA were significantly associated with neonatal birth weight (P=0.04). The enzyme level of placental MnSOD was also significantly associated with MDA concentration (P=0.04) and neonatal birth weight (p<0.01). We observed dose-response relationships between placental MnSOD and maternal urinary MDA, and neonatal birth weight after adjusting for maternal weight, height, age, and neonatal sex. After controlling for covariates, MnSOD variant genotype increased maternal urinary MDA concentrations (p<0.01) and reduced birth weight by 149 gm (P=0.08). Conclusions : This study demonstrates that the placental level of MnSOD during pregnancy significantly affects fetal growth by reducing oxidative stress, and that genetic polymorphism of MnSOD probably modulate the effects of oxidants on fetal growth.

Genetic defects in the nef gene are associated with Korean Red Ginseng intake: monitoring of nef sequence polymorphisms over 20 years

  • Cho, Young-Keol;Kim, Jung-Eun;Woo, Jun-Hee
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.144-150
    • /
    • 2017
  • Background: The presence of gross deletions in the human immunodeficiency virus nef gene ($g{\Delta}nef$) is associated with long-term nonprogression of infected patients. Here, we investigated how quickly genetic defects in the nef gene are associated with Korean Red Ginseng (KRG) intakein 10 long-term slow progressors. Methods: This study was divided into three phases over a 20-yr period; baseline, KRG intake alone, and KRG plus highly active antiretroviral therapy (ART). nef gene amplicons were obtained using reverse transcription polymerase chain reaction (PCR) and nested PCR from 10 long-term slow progressors (n = 1,396), and nested PCR from 36 control patients (n = 198), and 28 ART patients (n = 157), and these were then sequenced. The proportion of $g{\Delta}nef$, premature stop codons, and not in-frame insertion or deletion of a nucleotide was compared between three phases, control, and ART patients. Results: The proportion of defective nef genes was significantly higher in on-KRG patients (15.6%) than in baseline (5.7%), control (5.6%), on-KRG plus ART phase (7.8%), and on-ART patients (6.6%; p < 0.01). Small in-frame deletions or insertions were significantly more frequent among patients treated with KRG alone compared with controls (p < 0.01). Significantly fewer instances of genetic defects were detected in samples taken during the KRG plus ART phase (7.8%; p < 0.01). The earliest defects detected were $g{\Delta}nef$ and small in-frame deletions after 7 mo and 67 mo of KRG intake, respectively. Conclusion: KRG treatment might induce genetic defects in the nef gene. This report provides new insight into the importance of genetic defects in the pathogenesis of AIDS.

Biochemical Characterization and Genetic Diversity of Pongamia pinnata (L.) Pierre in Eastern India

  • Kumari, Kanchan;Sinha, Amrita;Singh, Sanjay;Divakara, B.N.
    • Journal of Forest and Environmental Science
    • /
    • 제29권3호
    • /
    • pp.200-210
    • /
    • 2013
  • Biochemical characteristics of 24 Pongamia pinnata genotypes (candidate plus trees) from three agroclimatic zones were estimated and molecular characterization through RAPD markers was done. Various biochemical characters viz. seed oil, total carbohydrates, protein, acid value and Iodine number recorded significant variation among different genotypes. The highest seed oil content was 41.87% while seeds of 14 genotypes recorded above average (32.11%) for the trait. Seed oil and protein content exhibited a significant positive correlation and moderate heritability. Out of the initially selected twenty-five random primers, twenty-two RAPD primers were found to be highly reproducible and produced a total of 183 loci of which 147 (80.32%) loci were polymorphic. Percentage of polymorphism varied from 44% to 100% with an average of 80.62%. High level of genetic variation was found among different genotypes of P. pinnata. Both molecular and oil content (biochemical) markers appeared useful in analyzing the extent of genetic diversity in Pongamia and the result of these analyses will help to better understand the genetic diversity and relationship among populations. Overall, the Pongamia genotypes included in the study showed a correlation with their geographical origins such that genotypes from the same region tend to have higher genetic similarity as compared to those from different regions. However, in UPGMA based Nei's analysis, some genotypes were found not to be grouped based on geographical origins possibly due to the exchange of germplasm over time between farmers across the regions. The results from oil content analyses showed that several genotypes in 'Central and Western Plateau' agroclimatic zone of Jharkhand displayed a good potential for high oil content. The study provides insight about P. pinnata populations in Jharkhand (India) and constitutes a set of useful background information that can be used as a basis for future breeding strategy and improvement of the species.

Molecular detection and genetic diversity of bovine papillomavirus in dairy cows in Xinjiang, China

  • Meng, Qingling;Ning, Chengcheng;Wang, Lixia;Ren, Yan;Li, Jie;Xiao, Chencheng;Li, Yanfang;Li, Zhiyuan;He, Zhihao;Cai, Xuepeng;Qiao, Jun
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.50.1-50.10
    • /
    • 2021
  • Background: Bovine papillomatosis is a type of proliferative tumor disease of skin and mucosae caused by bovine papillomavirus (BPV). As a transboundary and emerging disease in cattle, it poses a potential threat to the dairy industry. Objectives: The aim of this study is to detect and clarify the genetic diversity of BPV circulating in dairy cows in Xinjiang, China. Methods: 122 papilloma skin lesions from 8 intensive dairy farms located in different regions of Xinjiang, China were detected by polymerase chain reaction. The genetic evolution relationships of various types of BPVs were analyzed by examining this phylogenetic tree. Results: Ten genotypes of BPV (BPV1, BPV2, BPV3, BPV6, BPV7, BPV8, BPV10, BPV11, BPV13, and BPV14) were detected and identified in dairy cows. These were the first reported detections of BPV13 and BPV14 in Xinjiang, Mixed infections were detected, and there were geographical differences in the distribution of the BPV genotypes. Notably, the BPV infection rate among young cattle (< 1-year-old) developed from the same supply of frozen sperm was higher than that of the other young cows naturally raised under the same environmental conditions. Conclusions: Genotyping based on the L1 gene of BPV showed that BPVs circulating in Xinjiang China displayed substantial genetic diversity. This study provided valuable data at the molecular epidemiology level, which is conducive to developing deep insights into the genetic diversity and pathogenic characteristics of BPVs in dairy cows.

Genetic diversity of the H5N1 viruses in live bird markets, Indonesia

  • Dharmayanti, Ni Luh Putu Indi;Hewajuli, Dyah Ayu;Ratnawati, Atik;Hartawan, Risza
    • Journal of Veterinary Science
    • /
    • 제21권4호
    • /
    • pp.56.1-56.13
    • /
    • 2020
  • Background: The live bird market (LBM) plays an important role in the dynamic evolution of the avian influenza H5N1 virus. Objectives: The main objective of this study was to monitor the genetic diversity of the H5N1 viruses in LBMs in Indonesia. Methods: Therefore, the disease surveillance was conducted in the area of Banten, West Java, Central Java, East Java, and Jakarta Province, Indonesia from 2014 to 2019. Subsequently, the genetic characterization of the H5N1 viruses was performed by sequencing all 8 segments of the viral genome. Results: As a result, the H5N1 viruses were detected in most of LBMs in both bird' cloacal and environmental samples, in which about 35% of all samples were positive for influenza A and, subsequently, about 52% of these samples were positive for H5 subtyping. Based on the genetic analyses of 14 viruses isolated from LBMs, genetic diversities of the H5N1 viruses were identified including clades 2.1.3 and 2.3.2 as typical predominant groups as well as reassortant viruses between these 2 clades. Conclusions: As a consequence, zoonotic transmission to humans in the market could be occurred from the exposure of infected birds and/or contaminated environments. Moreover, new virus variants could emerge from the LBM environment. Therefore, improving pandemic preparedness raised great concerns related to the zoonotic aspect of new influenza variants because of its high adaptivity and efficiency for human infection.